www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Oberflächenintegral 1. Art
Oberflächenintegral 1. Art < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Oberflächenintegral 1. Art: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 So 03.02.2013
Autor: triad

Aufgabe
Berechnen Sie das Oberflächenintegral erster Art von [mm] $G:\IR^3\to\IR,\; [/mm] G(x,y,z):=x$ über das Flächenstück F: [mm] z=x^2+y [/mm] mit [mm] 0\le{}x\le{}1 [/mm] und [mm] -1\le{}y\le{}1. [/mm]

Hallo.

Mir liegt die folgende Definition zugrunde: Sei F ein doppelpunktfreies Flächenstück in der Form [mm] f:\overline{D}\to\IR^3 [/mm] und sei [mm] G:A\to\IR [/mm] eine in A mit [mm] F\subset{}A\subset\IR^3 [/mm] definierte stetige Funktion. Dann heißt

[mm] \integral_{F}{G(x) d\sigma}:=\iint_{\overline{D}}G(f(u,v))|f_u(u,v)\times{}f_v(u,v)|d(u,v) [/mm] das Flächenintegral (von F über G) erster Art.

Mein Problem ist, dass ich keine Funktion f(u,v) (die ja nach [mm] \IR^3 [/mm] abbildet, also einen 3-D Vektor liefert) oder etwas anderes 3-dimensionales gegeben habe, was ich in G einsetzen kann. Vor allem muss ich das nicht vorhandene f dann noch nach u und v ableiten.
Kann mir jemand weiterhelfen?

gruß triad

        
Bezug
Oberflächenintegral 1. Art: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 So 03.02.2013
Autor: Richie1401

Hallo triad,

parametrisiere das Flächenstück F.

Nimm die Variablen x=u und y=v und du erhältst:

[mm] f(u,v)=\vektor{u\\v\\u^2+v},\ u\in(0,1),\ v\in(-1,1) [/mm]

Bezug
                
Bezug
Oberflächenintegral 1. Art: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 So 03.02.2013
Autor: triad


> Hallo triad,
>  
> parametrisiere das Flächenstück F.
>  
> Nimm die Variablen x=u und y=v und du erhältst:
>  
> [mm]f(u,v)=\vektor{u\\v\\u^2+v},\ u\in(0,1),\ v\in(-1,1)[/mm]  


Ah, danke. Da wäre (bin) ich selbst nicht drauf gekommen. Das sah für mich etwas fremd aus.

Ich habe dann weiter gerechnet [mm] \iint_{\overline{D}}G(f(u,v))|f_u(u,v)\times{}f_v(u,v)|d(u,v)= [/mm]

[mm] \integral_{0}^{1}\integral_{-1}^{1}u\left|\vektor{1 \\ 0 \\ 2u}\times{}\vektor{0 \\ 1 \\ 1}\right|d(u,v) [/mm] = [mm] \integral_{0}^{1}\integral_{-1}^{1}u\left|\vektor{-2u \\ -1 \\ 1}\right|d(u,v) [/mm] = [mm] \integral_{0}^{1}\integral_{-1}^{1}u\wurzel{4u^2+2}\;d(u,v) [/mm] = [mm] \integral_{0}^{1}u\wurzel{4u^2+2}\,du\integral_{-1}^{1}1\,dv [/mm] = [mm] 2*\left(\wurzel{\frac{3}{2}}-\frac{1}{3\wurzel{2}}\right). [/mm]


Stimmt das? :-)

gruß triad

Bezug
                        
Bezug
Oberflächenintegral 1. Art: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 So 03.02.2013
Autor: notinX

Hallo,

>
> Stimmt das? :-)

ja.

>  
> gruß triad

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]