www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Ober- und Untersumme
Ober- und Untersumme < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ober- und Untersumme: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 01.02.2011
Autor: Ersty

Aufgabe
[mm] \integral_{1}^{3}{(x-1) dx} [/mm] berechne dieses Integral mit der Definition 1 + 2 + 3 + ... + n = [mm] \bruch{n(n+1)}{2} [/mm]

(Lösung ist 1)

Hi, ich bin ziemlich raus aus dem Thema Ober und Untersumme, habe aber noch etwas Restwissen aus der Schule!

Ich habe es versucht auszurechnen, mache aber anscheinend Rechenfehler, könntet ihr mir vlt sagen, wo ich falsch liege, ich wäre euch sehr dankbar!

Auf gehts:

Zerlegung in 1, 1+1*2/n, 1+2*2/n, ... , 1+(n-1)*2/n, 1+n *2/n

[mm] \Delta [/mm] x = 2/n

Die Untersumme berechnet sich folgendermaßen:
U = [mm] \Delta [/mm] x * f(1) + [mm] \Delta [/mm] x * f(1+1*2/n) +...+ [mm] \Delta [/mm] x * f(1+(n-1)*2/n)

jetzt kann ich [mm] \Delta [/mm] x rausziehen:

U = [mm] \Delta [/mm] x * [ f(1) + ... + f(1+(n-1)*2/n)]

Werte einsetzen:

U = 2/n * [ 0 + (1+ 2/n -1) + ... + (1+(n-1)*2/n -1) ]   (#)

ist das richtig bis hierher?

jetzt ausrechnen, und da bin ich mir nicht sicher, ob das korrekt ist:

U = 2/n * [ 2/n + 2*2/n + ... + (n-1)*2/n ]

jetzt 2/n ausklammern oder bei (#) nicht ausrechnen, sondern gleich (2/n-1) ausklammern???

ersteres liefert:

U = 4/n² [ 1 + 2+ ... +n-1]

Nach Def gilt:

U = 4/n² * [mm] \bruch{n²-n}{2} [/mm]

und der Grenzwert davon wird nicht 2, was mache ich falsch?

Ich habe diese Frage in keinem anderen forum gestellt, ich sage schonmal danke und freue mich auf eine baldige Antwort! Vielen Dank!

MFG Ersty




        
Bezug
Ober- und Untersumme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 01.02.2011
Autor: fencheltee


> [mm]\integral_{1}^{3}{(x-1) dx}[/mm] berechne dieses Integral mit
> der Definition 1 + 2 + 3 + ... + n = [mm]\bruch{n(n+1)}{2}[/mm]
>  
> (Lösung ist 1)

lösung ist 2 meinst du

>  Hi, ich bin ziemlich raus aus dem Thema Ober und
> Untersumme, habe aber noch etwas Restwissen aus der
> Schule!
>  
> Ich habe es versucht auszurechnen, mache aber anscheinend
> Rechenfehler, könntet ihr mir vlt sagen, wo ich falsch
> liege, ich wäre euch sehr dankbar!
>  
> Auf gehts:
>  
> Zerlegung in 1, 1+1*2/n, 1+2*2/n, ... , 1+(n-1)*2/n, 1+n
> *2/n
>  
> [mm]\Delta[/mm] x = 2/n
>  
> Die Untersumme berechnet sich folgendermaßen:
>  U = [mm]\Delta[/mm] x * f(1) + [mm]\Delta[/mm] x * f(1+1*2/n) +...+ [mm]\Delta[/mm] x
> * f(1+(n-1)*2/n)
>  
> jetzt kann ich [mm]\Delta[/mm] x rausziehen:
>  
> U = [mm]\Delta[/mm] x * [ f(1) + ... + f(1+(n-1)*2/n)]
>  
> Werte einsetzen:
>  
> U = 2/n * [ 0 + (1+ 2/n -1) + ... + (1+(n-1)*2/n -1) ]  
> (#)
>  
> ist das richtig bis hierher?
>  
> jetzt ausrechnen, und da bin ich mir nicht sicher, ob das
> korrekt ist:
>  
> U = 2/n * [ 2/n + 2*2/n + ... + (n-1)*2/n ]
>  
> jetzt 2/n ausklammern oder bei (#) nicht ausrechnen,
> sondern gleich (2/n-1) ausklammern???
>  
> ersteres liefert:
>  
> U = 4/n² [ 1 + 2+ ... +n-1]
>  
> Nach Def gilt:
>  
> U = 4/n² * [mm]\bruch{n²-n}{2}[/mm]
>  
> und der Grenzwert davon wird nicht 2, was mache ich
> falsch?

sieht man doch auf anhieb, dass 2 herauskommt!
wie rechnest du denn ab hier weiter?

>  
> Ich habe diese Frage in keinem anderen forum gestellt, ich
> sage schonmal danke und freue mich auf eine baldige
> Antwort! Vielen Dank!
>
> MFG Ersty
>  
>
>  

gruß tee

Bezug
                
Bezug
Ober- und Untersumme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Di 01.02.2011
Autor: Ersty

Blöd, ja! vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]