Ober- und Untersumme < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 14:48 Sa 18.11.2006 | Autor: | Loon |
Aufgabe | Es liegt folgende Wertetabelle vor:
Zeit in Tagen 0 30 60 120 150 180
Hg-Menge 3.5 2,4 1,8 0,8 0,5 0,4
Zeigen Sie, dass die Funktion f(x) = 3,552 [mm] \* 0,9876^{x} [/mm] im Intervall [0;180] eine gute Anpassung an die gegebenen Daten liefert. |
Hallo!
Zuerst habe ich den Graphen dieser Funktion gezeichnet. Ich denke, dass ich jetzt die Obersumme und die Untersumme berechnen muss, weil ja der Mittelwert eine Annäherung an den tatsächlichen Verlauf der Kurve bietet. Allerdings habe ich dabei zwei Probleme: Erstens weiß ich nicht, wie ich die Ober- und Untersumme berechnen kann (Ich habe auch in unserem Mathebuch keine Hilfe gefunden) und zweitens weiß ich nicht, wie ich aus dem Mittelwert dieser Summen eine Funktionsgleichung erstellen kann.
Lg, Loon
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:22 Sa 18.11.2006 | Autor: | Zwerglein |
Hi, Loon,
> Es liegt folgende Wertetabelle vor:
>
> Zeit in Tagen 0 30 60 120 150 180
> Hg-Menge 3.5 2,4 1,8 0,8 0,5 0,4
>
> Zeigen Sie, dass die Funktion f(x) = 3,552 [mm]\* 0,9876^{x}[/mm] im
> Intervall [0;180] eine gute Anpassung an die gegebenen Daten liefert.
> Zuerst habe ich den Graphen dieser Funktion gezeichnet. Ich
> denke, dass ich jetzt die Obersumme und die Untersumme
> berechnen muss, weil ja der Mittelwert eine Annäherung an
> den tatsächlichen Verlauf der Kurve bietet. Allerdings habe
> ich dabei zwei Probleme: Erstens weiß ich nicht, wie ich
> die Ober- und Untersumme berechnen kann (Ich habe auch in
> unserem Mathebuch keine Hilfe gefunden) und zweitens weiß
> ich nicht, wie ich aus dem Mittelwert dieser Summen eine
> Funktionsgleichung erstellen kann.
Also für mich sieht die Sache einfach so aus, als müsstest Du die erhaltenen Werte aus der obigen Tabbele mit den Funktionswerten der gegebenen Funktion vergleichen und nachprüfen, ob diese Zahlen nicht allzu stark voneinander abweichen.
Z.B.: für x=30 (ich bezeichne die Zeit mit x, weil auch im Funktionsterm das x als Variable auftritt) steht in der Tabelle: Hg-Menge 2,4 (was eigentlich? Gramm? Milligramm?)
In den Funktionsterm eingesetzt erhältst Du:
f(30) = 3,552 [mm][mm] \* 0,9876^{30} \approx [/mm] 2,443.
Die beiden Werte weichen demnach nicht allzusehr ab => brauchbarer Funktionsterm.
(Das musst Du allerdings für alle Werte aus der Tabelle tun!)
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:22 Mo 20.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|