www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - ONB & Fourrierreihe in L²
ONB & Fourrierreihe in L² < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ONB & Fourrierreihe in L²: Korrektur & Tipp
Status: (Frage) überfällig Status 
Datum: 14:28 Sa 25.05.2013
Autor: Approximus

Aufgabe
Die Funktionen [mm] C_{0}, C_{n}, S_{n} \in L^{2}((-\pi,\pi),\IR),n\in\IN, [/mm] seien definiert durch [mm] C_{0}=\bruch{1}{2\pi},C_{n}=\bruch{1}{\pi}cos(nx),S_{n}=\bruch{1}{\pi}sin(nx) [/mm]

a) Zeigen Sie, dass das Funktionensystem [mm] {C_{0}, C_{n}, S_{n}:n\in\IN} [/mm] eine ONB in [mm] L^{2}((-\pi,\pi),\IR) [/mm] bildet
b) Folgern Sie, dass sich jedes [mm] f\in L^{2}((-\pi,\pi),\IR) [/mm] in [mm] L^{2}((-\pi,\pi),\IR) [/mm] darstellen lässt als reelle Fourierreihe [mm] f=\bruch{a_{0}}{2}+\summe_{n=1}^{\infty}(a_{n}cos(n*)+b_{n}sin(n*)). [/mm] Geben Sie die Formeln für die Koeffizienten [mm] a_{0},a_{n},b_{n},n\in\IN, [/mm] an.


Hallo, bei der Teilaufgabe a) müsste ich eigentlich alles haben und zur Teilaufgabe b) kann ich einen Tipp gebrauchen.



Aufgabe a) Hier muss ich die Orthogonalität paarweise und die Normierung bestimmen.

Skalarprdukt in [mm] L^{2}((-\pi,\pi),\IR): =\integral_{-\pi}^{\pi}{f(x)g(x) dx} [/mm]

Orthogonalität:

[mm] =\bruch{1}{\wurzel{2}*\pi}\integral_{-\pi}^{\pi}{cos(nx) dx}=\bruch{1}{\wurzel{2}*\pi}[\bruch{1}{n}sin(nx)]^{\pi}_{-\pi}=0 [/mm]

( Nullstellen von sin(x) sind auch Nullstellen von sin(nx) [mm] \forall n\in\IN [/mm] )

[mm] =\bruch{1}{\wurzel{2}*\pi}\integral_{-\pi}^{\pi}{sin(nx) dx}=\bruch{1}{\wurzel{2}*\pi}[\bruch{1}{n}(-)cos(nx)]^{\pi}_{-\pi}=0 [/mm]

( -cos(nx) ist eine gerade Funktion, also -cos(nx)=-cos(-nx) [mm] \forall n\in\IN [/mm] )

[mm] =\bruch{1}{\pi}\integral_{-\pi}^{\pi}{sin(nx)cos(nx) dx}=\bruch{1}{\pi}(\bruch{1}{n}[sin^{2}(nx)]^{\pi}_{-\pi}-\integral_{-\pi}^{\pi}{sin(nx)\bruch{1}{n}cos(nx)n dx} [/mm]
[mm] \Rightarrow \bruch{2}{\pi}\integral_{-\pi}^{\pi}{sin(nx)cos(nx) dx}=\bruch{1}{n\pi}[sin^{2}(nx)]^{\pi}_{-\pi} [/mm]
[mm] \Rightarrow \bruch{1}{\pi}\integral_{-\pi}^{\pi}{sin(nx)cos(nx) dx}=\bruch{1}{2n\pi}[sin^{2}(nx)]^{\pi}_{-\pi}=0 [/mm]

(erste Schritt mit partieller Integration, Nullstellen von sin(x) sind auch Nullstellen von sin(nx) gilt logischerweise auch für [mm] sin^{2}(x) [/mm] und [mm] sin^{2}(nx) \forall n\in\IN [/mm] )

Normierung:

durch Skalarprodukt induzierte Norm: [mm] \parallel f(x)\parallel=\integral_{-\pi}^{\pi}{(f(x))^{2} dx} [/mm]

[mm] \parallel C_{0}\parallel=\integral_{-\pi}^{\pi}{\bruch{1}{2\pi} dx}=\bruch{1}{2}-(-)\bruch{1}{2}=1 [/mm]

[mm] \parallel C_{n}\parallel=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{cos^{2}(nx) dx}=\bruch{1}{\pi}\integral_{-\pi}^{\pi}{cos(nx)*cos(nx) dx} [/mm]
partielle Integration [mm] \Rightarrow \bruch{1}{\pi}(\bruch{1}{n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}-\integral_{-\pi}^{\pi}{\bruch{1}{n}*sin(nx)*(-)sin(nx)*n dx})=\bruch{1}{\pi}(\bruch{1}{n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}+\integral_{-\pi}^{\pi}{1-cos^{2}(nx) dx})=\bruch{1}{\pi}(\bruch{1}{n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}+2\pi-\integral_{-\pi}^{\pi}{cos^{2}(nx) dx}) [/mm]
[mm] \Rightarrow 2*\integral_{-\pi}^{\pi}{\bruch{1}{\pi}cos^{2}}=\bruch{1}{\pi}(\bruch{1}{n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}+2\pi) [/mm]
[mm] \Rightarrow \integral_{-\pi}^{\pi}{\bruch{1}{\pi}cos^{2}}=\bruch{1}{\pi}(\bruch{1}{2n}*[sin(nx)*cos(nx)]^{\pi}_{-\pi}+\pi) [/mm]
[mm] sin(nx)*cos(nx)=\bruch{sin(2nx)}{2}\Rightarrow \bruch{1}{\pi}(\bruch{1}{4n}*\underbrace{[sin(2nx)]^{\pi}_{-\pi}}_{=0}+\pi)=\bruch{\pi}{\pi}=1 [/mm]

Analog [mm] \parallel S_{n}\parallel=1 [/mm]

Damit bildet das Funktionensystem [mm] {C_{0}, C_{n}, S_{n}:n\in\IN} [/mm] ein ONS in [mm] L^{2}((-\pi,\pi),\IR) [/mm]

Aufgabe b)
Jetzt muss ich zeigen, dass die 3 Funktion [mm] C_{0}, C_{n}, S_{n} [/mm] ein vollständiges ONS in [mm] L^{2}((-\pi,\pi),\IR) [/mm] bilden, also eine ONB. Wie kann ich das zeigen? Wenn ich das gezeigt habe, kann man alle Funktionen aus [mm] L^{2}((-\pi,\pi),\IR) [/mm] mit abzählbar unendlich vielen Funktionen der ONB darstellen. Die Fourrierreihe bezüglich der ONB ist dann gerade die Reihendarstellung einer Funktion aus [mm] L^{2}((-\pi,\pi),\IR) [/mm] und die Koeffizienten sind gerade [mm] , [/mm] und [mm] [/mm]

Vielen Dank für eure Mühe im voraus!
Mfg

Diese Frage habe ich in keinem anderen Forum gestellt!

        
Bezug
ONB & Fourrierreihe in L²: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 31.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]