www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - ON-Basis symmetrischer Matrize
ON-Basis symmetrischer Matrize < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ON-Basis symmetrischer Matrize: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Sa 29.04.2006
Autor: schilli

Hallo Leute.
Häne in Lin. Algebra II zur Zeit etwas hinterher, für euch ist das sicherlich eine Kindergarten-Aufgabe. Wäre nett, wenn mir jemand den Lösungsweg aufzeigen würde.
Und zwar muss ich die Orthonormalbasis einer symmetrischen 4,4-Matrix berechnen. (Konkrete Matrix: 1.Spalte: 2 1 0 0, 2.Spalte: 1 2 1 0, 3.Spalte: 0 1 2 1, 4.Spalte: 0 0 1 2 .
Danke
Matthias

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
ON-Basis symmetrischer Matrize: Schmidtsche O-Normalisierung
Status: (Antwort) fertig Status 
Datum: 16:06 Sa 29.04.2006
Autor: Infinit

Hallo Matthias,
das Ganze ist leider keine Kindergartenaufgabe und man muss schon etwas Grips reinstecken. Schau doch mal nach, ob Du in Deinem Skript etwas zu einem Schmidtschen Orthonomalisierungsverfahren findest, dies ist die gängige Methode, um sich aus einem Vektorraum eine ON-Basis zu erzeugen. Die Idee dabei ist, einen der gegebenen Vektoren als eine Komponente der Orthonormalbasis zu nehmen, und mit Hilfe des Skalarproduktes sich die restlichen Komponenten zu bestimmen.
Ist $$ [mm] \{ a_1, a_2, ..., a_n\} [/mm] $$ eine Basis des Vektorraums, so erzeugt man hieraus ein Orthogonalsystem [mm] $$\{b_1, b_2, ..., b_n\} [/mm] $$ mit
$$ [mm] b_1 [/mm] = [mm] a_1 [/mm] $$ und $$ [mm] b_k [/mm] = [mm] a_k [/mm] - [mm] \sum_{i=1}^{k-1} \bruch{(a_k, b_i)}{(b_i, b_i)} \cdot b_i [/mm] $$
für k = 2,...,n. Hierbei bezeichnet $$ [mm] (a_k, b_i) [/mm] $$ das Skalarprodukt zwischen den Vektoren [mm] $a_k$ [/mm] und [mm] $b_i$. [/mm]
Danach muss man nur noch die entstandenen Vektoren normieren und hat die Orthonormalbasis.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]