www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - O-Notation
O-Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

O-Notation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Sa 14.02.2009
Autor: bonanza

Aufgabe
Ermitteln Sie die Komplexität von Bubblesort in der O-Notation:

void bubbleSort(int numbers[], int array_size)
{
  int i, j, temp;

  for (i = (array_size - 1); i >= 0; i--)
  {
    for (j = 1; j <= i; j++)
    {
      if (numbers[j-1] > numbers[j])
      {
        temp = numbers[j-1];
        numbers[j-1] = numbers[j];
        numbers[j] = temp;
      }
    }
  }
}

Hi,

ich habe eine eher generelle Frage zur Laufzeitanalyse von Funktionen. Undzwar ist mir nicht wirklich klar, wie die Laufzeiten der inneren und äußeren Schleifen zu einander stehen.

ich weiß, dass die äußere Schleifen N-1 Iterationen hat, und die innere Schleife zuerst N-1, dann N-2, N-3, ... Iterationen und die Laufzeit der If-Verzweigung 3 Operationen hat und damit O(1) entspricht. Aber wie muss ich die jetzt zusammen in verbindung setzen um die GEsamtlaufzeit zu erhalten?

Muss ich die Iterationen der äußeren mit denen der inneren multiplizieren?
(N-1)*(N*(N-1)/2+3)

oder werden die "nur" addiert ?
(N-1)+(N*(N-1)/2+3)

Eine kleiner Erläuterung wäre sehr hilfreich :)

danke schonmal im voraus!

        
Bezug
O-Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Sa 14.02.2009
Autor: Karl_Pech

Hallo bonanza,


Im Worst-Case (z.B. beim Feld 3,2,1) ist die if-Abfrage bei jedem Durchlauf der inneren for-Schleife erfüllt. Dann führt die innere Schleife genau [mm]i\![/mm] Schritte aus, da [mm]j=1,\dotsc,i\![/mm]. Im Fall [mm]i = 0\![/mm] wird nur der innere Schleifenkopf ausgeführt, wofür wir einfach mal den Verbrauch einer Zeiteinheit annehmen. Die if-Abfrage und die 3 Befehle im if-Körper sollen jetzt mal insg. 4 Zeiteinheiten verbrauchen. Dann hätte man also insg. array_size-1 Schritte, wo die innere for-Schleife jeweils i-mal ausgeführt wird und einen array_size'ten Schritt, wo nur der innere Schleifenkopf ausgeführt wird. Die Anzahl Schritte insg. ist damit:


[mm]1+\sum_{i=1}^{\operatorname{array\_size}-1}{\sum_{j=1}^i{4}}[/mm]


Diese verschachtelte Summe mußt du jetzt von innen nach außen auflösen (z.B. mit den Formeln von Gauss) und danach schauen, welche Laufzeit sich durch die O-Notation ergibt.



Viele Grüße
Karl




Bezug
                
Bezug
O-Notation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 Sa 14.02.2009
Autor: bonanza

Aufgabe
Geben Sie mit Hilfe der O-Notation die Laufzeiten der beiden Funktionen an:

int Pow1(int n)
{
if (n > 0) {
return (2*Pow1(n-1));
}
else {
return 1;
}
}

//-----------

int Pow2(int n)
{
if (n > 0) {
return (Pow2(n-1) + Pow2(n-1));
}
else {
return 1;
}
}

Danke für deine Antwort!

Wären das dann
[mm] 2*(Arraysize)^2-Arraysize+1 [/mm] = [mm] O(Arraysize^2) [/mm] ?


Ich habe jetzt direkt noch eine Frage... Wie geht bei bei der Analyse rekursiver Funktionen vor ?

Ich hätte jetzt gesagt, dass die Funktion "Pow1"
1 + 1*n schritte macht und dann eine Laufzeit von O(n) hätte.

bei Funktion "Pow2" bin ich mir wiederrum nicht sicher ob es O(2n) = O(n) oder [mm] O(n^2) [/mm] ist.

Wäre auch hier für eine Erläuterung wieder dankbar ;)


Bezug
                        
Bezug
O-Notation: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 So 15.02.2009
Autor: VornameName

Hallo bonanza,

> Geben Sie mit Hilfe der O-Notation die Laufzeiten der
> beiden Funktionen an:
>  
> int Pow1(int n)
>  {
>  if (n > 0) {

>  return (2*Pow1(n-1));
>  }
>  else {
>  return 1;
>  }
>  }
>  
> //-----------
>  
> int Pow2(int n)
>  {
>  if (n > 0) {

>  return (Pow2(n-1) + Pow2(n-1));
>  }
>  else {
>  return 1;
>  }
>  }
>  Danke für deine Antwort!
>  
> Wären das dann
>  [mm]2*(Arraysize)^2-Arraysize+1[/mm] = [mm]O(Arraysize^2)[/mm] ?


Fast, du hast eine 2 beim arraysize vergessen.


> Ich habe jetzt direkt noch eine Frage... Wie geht bei bei
> der Analyse rekursiver Funktionen vor ?


Du mußt die Anzahl der Aufrufe der Funktion zählen bis eine (der) Abbruchbedingung(en) der Funktion erreicht ist.
Gibt es keine Abbruchbedingungen ist die Laufzeit der Funktion durch die, an die Funktion zugewiesene, Stackgröße begrenzt.


> Ich hätte jetzt gesagt, dass die Funktion "Pow1"
>  1 + 1*n schritte macht und dann eine Laufzeit von O(n)
> hätte.


Es ist sicherlich in O(n). Für n = 0, werden 2 Z.E. (if-Abfrage, return 1) verwendet. Für n = 1 wird erstmal 1 Z.E. mehr verwendet (if-Abfrage) und dann findet der Aufruf Pow1(0) statt, der 2 Z.E. benötigt, die anschließende Multiplikation mit Rückgabe soll jetzt mal 1 Z.E. benötigen. Insgesamt also: 1 + 2 + 1 = 4 = 2*2 Z.E. . Für n = 2 benötigt man bereits 2(if-Abfrage, return mit mult.) + Schritte für Pow1(1) = 2+4 = 6 = 2*3 Z.E. .

Behauptung: Für Pow1(n) benötigt man 2(n+1) Zeiteinheiten.

Beweis durch Induktion:

n = 0 klar. n -> n+1: Nach Induktionsannahme benötigt man für Pow1(n+1) 2(if-Abfrage, return mit mult.) + 2(n+1) Z.E. = 2(1+n+1) Z.E. = 2((n+1)+1) Z.E. qed


> bei Funktion "Pow2" bin ich mir wiederrum nicht sicher ob
> es O(2n) = O(n) oder [mm]O(n^2)[/mm] ist.


Pow2(0) : [mm]2\texttt{ ZE} = 2^1\texttt{ ZE}[/mm]
Pow2(1) : [mm]2^1\texttt{(if,+)} + 2^1 + 2^1\texttt{ ZE}=2^1+2^2\texttt{ ZE}[/mm]
Pow2(2) : [mm]2 + 2+2^2 + 2+2^2\texttt{ ZE}=2^1+2^2+2^3\texttt{ ZE}[/mm]
Pow2(3) : [mm]2^1 + 2^2 + 2^3 + 2^4\texttt{ ZE}[/mm]
Pow2(4) : [mm]2^1 + 2^2 + 2^3 + 2^4 + 2^5\texttt{ ZE}[/mm]

Vermutung: Pow2(n) : [mm]\textstyle\sum_{i=1}^{n+1}{2^i}\texttt{ ZE}[/mm].

Siehe dir nun die []geometrische Reihe an, um die Summe zu vereinfachen. Danach mußt du die Formel mit []vollständiger Induktion beweisen.

Gruß V.N.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]