www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Nummerisch
Nummerisch < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nummerisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Sa 21.11.2009
Autor: Ice-Man

Ich weis nicht ob ich jetzt ein wenig falsch liege.

Bsp.
[mm] f(x)=x-e^{-x} [/mm]
[mm] f'(x)=1+e^{-x} [/mm]
[mm] x_{0} [/mm] sei 0,4

Jetzt wollt ich das nummerisch lösen.
"1.Reihe"
[mm] x_{k}=0,4 [/mm]
[mm] e^{-x_{k}}=0,670320 [/mm]
[mm] x_{k}-e^{-x_{k}}=-0,270320 [/mm]
[mm] 1+e^{-x_{k}}=1,670320 [/mm]

und jetzt wollt ich weiterrechnen.
[mm] x_{1}=x_{0}-\bruch{f(x_{0})}{f'(x_{0})} [/mm]
[mm] x_{1}=0,4-\bruch{-0,270320}{1,67032} [/mm]
[mm] x_{1}=0,4-(-0,161837) [/mm]
[mm] x_{1}=0,561865 [/mm]

das wäre ja so richtig gedacht, oder?

        
Bezug
Nummerisch: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Sa 21.11.2009
Autor: MathePower

Hallo Ice-Man,

> Ich weis nicht ob ich jetzt ein wenig falsch liege.
>  
> Bsp.
>  [mm]f(x)=x-e^{-x}[/mm]
>  [mm]f'(x)=1+e^{-x}[/mm]
>  [mm]x_{0}[/mm] sei 0,4
>  
> Jetzt wollt ich das nummerisch lösen.
>  "1.Reihe"
> [mm]x_{k}=0,4[/mm]
>  [mm]e^{-x_{k}}=0,670320[/mm]
>  [mm]x_{k}-e^{-x_{k}}=-0,270320[/mm]
>  [mm]1+e^{-x_{k}}=1,670320[/mm]
>  
> und jetzt wollt ich weiterrechnen.
>  [mm]x_{1}=x_{0}-\bruch{f(x_{0})}{f'(x_{0})}[/mm]
>  [mm]x_{1}=0,4-\bruch{-0,270320}{1,67032}[/mm]
>  [mm]x_{1}=0,4-(-0,161837)[/mm]
>  [mm]x_{1}=0,561865[/mm]
>  
> das wäre ja so richtig gedacht, oder?


Ja, das ist richtig gedacht.


Gruss
MathePower

Bezug
                
Bezug
Nummerisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Sa 21.11.2009
Autor: Ice-Man

dann habe ich noch eine weitere frage dazu.
wen ich jetzt mit "völlig ungerundeten werten" weiterechne.
dann soll laut buch für
[mm] x_{2}=0,567138 [/mm] herauskommen, es steht auch im buch im "bruch" [mm] \bruch{f(x)}{f'(x)}=\bruch{-0,009}{1,37} [/mm]
ich habe jedoch
[mm] x_{2}=0,556536 [/mm] heraus.

habe ich mich verrechnet?

Bezug
                        
Bezug
Nummerisch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Sa 21.11.2009
Autor: MathePower

Hallo Ice-Man,

> dann habe ich noch eine weitere frage dazu.
>  wen ich jetzt mit "völlig ungerundeten werten"
> weiterechne.
>  dann soll laut buch für
> [mm]x_{2}=0,567138[/mm] herauskommen, es steht auch im buch im
> "bruch" [mm]\bruch{f(x)}{f'(x)}=\bruch{-0,009}{1,37}[/mm]
>  ich habe jedoch
> [mm]x_{2}=0,556536[/mm] heraus.
>  
> habe ich mich verrechnet?


Zwischenergebnisse darfst Du nicht runden.

Erst wenn Du das Endergebnis hast, kannst Du runden.


Die Werte [mm]x_{n}, \ f\left(x_{n}\right), \ f'\left(x_{n}\right)[/mm]
sind hier nicht zu runden.

Erst das Ergebnis

[mm]x_{n+1}=x_{n}-\bruch{f\left(x_{n}\right)}{f'\left(x_{n}\right)}[/mm]

kann gerundet werden.

Das Newton-Verfahren ist ja so ausgelegt, daß sich die Anzahl der gültigen Ziffern mit jedem Iterations-Schritt verdoppelt.


Gruss
MathePower

Bezug
                                
Bezug
Nummerisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 21.11.2009
Autor: Ice-Man

und was stimmt dann nun.
die werte im buch, oder "meine"?

Bezug
                                        
Bezug
Nummerisch: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Sa 21.11.2009
Autor: MathePower

Hallo Ice-Man,

> und was stimmt dann nun.
>  die werte im buch, oder "meine"?


Die Werte im Buch stimmen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]