www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Nullstellenmenge von f(x,y)
Nullstellenmenge von f(x,y) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenmenge von f(x,y): Problem mit einer Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 05.07.2005
Autor: Crizzel

Hallo,

ich sitz im Moment vor folgender Aufgabe:
[]http://mo.mathematik.uni-stuttgart.de/inhalt/interaufg/interaufg678/variante2/

Und ich kapier noch nicht so ganz - da leider in unserem HM-Skript unerwähnt geblieben - wie man eine Nullstellenmenge skizziert.
Ich habe die Lösung zur Hand, leider bringt mich die auch nicht weiter.
Und ich verstehe noch nicht so ganz, wie ich auf den letzten Punkt ( [mm] \bruch{1}{3},0) [/mm] komme.

Kann mir jemand weiterhelfen? Wäre geschickt, ich schreib morgen HM-Scheinklausur ;-)

Vielen Dank!

Grüße
Chris

- Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. -

        
Bezug
Nullstellenmenge von f(x,y): Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Di 05.07.2005
Autor: angela.h.b.


> Hallo,
>  
> ich sitz im Moment vor folgender Aufgabe:
>  
> []http://mo.mathematik.uni-stuttgart.de/inhalt/interaufg/interaufg678/variante2/
>  
> Und ich kapier noch nicht so ganz - da leider in unserem
> HM-Skript unerwähnt geblieben - wie man eine
> Nullstellenmenge skizziert.

Hallo,

ich hab' mal drüber geguckt,
und bzgl. der Nullstellen festgestellt:

zur Nullstellenmenge gehören sämtliche Punkte, welche eine der folgenden "Gestalten" haben: (0,y) , (1,y), (x,  [mm] \pm \wurzel{1-x}) [/mm] mit geeigneten x, also x [mm] \le [/mm] 1.

Zur Skizze:
(0,y): das bedeutet x=0 und y beliebig, also die x-Achse.
(1,y): x=1 und y beliebig, also Parallele zur y-Achse durch (1,0).
(x,  [mm] \pm \wurzel{1-x}): [/mm] jedem [mm] x\le [/mm] 1 werden zugeordnet die Werte (x,  [mm] \pm \wurzel{1-x}). [/mm] Also wären im entsprechenden Bereich die Funktionen f(x)=(x,  [mm] \wurzel{1-x}) [/mm] und g(x)=(x, [mm] -\wurzel{1-x}) [/mm] zu skizzieren.

Es könnte aber sein, daß Du statt (x,  [mm] \pm \wurzel{1-x}) (1-y^2, [/mm] y) ermittelt hast. Dann dreh Dein Papier und ordne y den Wert [mm] y^2-1 [/mm] zu. Es sollte dasselbe ergeben.

>  Ich habe die Lösung zur Hand, leider bringt mich die auch
> nicht weiter.

>  Und ich verstehe noch nicht so ganz, wie ich auf den
> letzten Punkt ( [mm]\bruch{1}{3},0)[/mm] komme.

Ich hab' gerade leider keine Zeit mehr, die Extrema nachzurechnen. Aber ich denke, der "Knackpunkt" ist der Rand. Mit der bekannten Strategie mit Ableitung=0 usw. kriegst Du lokale Extrema im Innern des Gebietes, solche, die eine Umgebung haben, in welcher alle Funktionswerte kleiner bzw. größer sind.  Die Sache mit dem Rand ist wie bei Funktionen einer Veränderlicher: da muß man bei abgeschlossenen Intervallen ja auch noch die Grenzen untersuchen, denn hier könnte ein absolutes Maximum oder Minimum erreicht werden.

Also: wenn nach globalen Extremwerten auf abgeschlossenen Mengen gefragt wird, NIE den Rand vergessen!

Gruß v. Angela

>  
> Kann mir jemand weiterhelfen? Wäre geschickt, ich schreib
> morgen HM-Scheinklausur ;-)
>  
> Vielen Dank!
>  
> Grüße
>  Chris
>  
> - Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. -


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]