www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Nullstellenbestimmung bei e-Fu
Nullstellenbestimmung bei e-Fu < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung bei e-Fu: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 10.01.2007
Autor: Thorsten

Aufgabe
f(x) = 10x - [mm] e^x [/mm]
Schnittpunkte mit der x-Achse?

Hallo!
Ich habe diese Frage in keinem anderen Forum gestellt. Ich schaffe es nicht, die Nullstellen zu berechnen. Zwei gedankliche Ansätze habe ich:
1) 10x - [mm] e^x [/mm] = 0 / [mm] +e^x [/mm]
   10x = [mm] e^x [/mm]     / ln
  ln10 + ln x = x * ln e / ln e = 1 also:
  ln10 + ln x = x        / -ln10 ; -ln x
  x - ln x - ln10 = 0 [mm] \Rightarrow [/mm] hier weiss ich nicht weiter
2) Manchmal kann man ja auch substituieren?!
Das würde z. B. bei f(x) = e^(2x) + 6 + [mm] e^x [/mm] funktionieren.
[mm] e^x [/mm] = z [mm] \Rightarrow z^2 [/mm] + z + 6 = 0 (pq-Formel usw.)
Aber hier hift dies wohl nicht?!
Per Programm kann man [mm] x_{1}= [/mm] 0,11 und [mm] x_{2}=3,58 [/mm] berechnen.

Vorweg ein dickes Dankeschön für euer Bemühen!!!

        
Bezug
Nullstellenbestimmung bei e-Fu: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Mi 10.01.2007
Autor: leduart

Hallo
Du hast alles versucht, was man hier kann!
ES GIBT KEINE explizite Lösung.
d.h. du brauchst ein numerisches Verfahren, was du wohl Programm nennst. Üblicherweise verwendet man das newtonverfahren, um eine Näherungslösung zu finden, wenn ihr das gelernt habt, solld as hier wohl angewendet werden, oder ihr dürft ein fertiges Programm verwenden.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]