www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Nullstellenbestimmung
Nullstellenbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:30 Mi 19.11.2008
Autor: salumon

Aufgabe
Hallo,
behandel in der Schule gerade Integralrechnung und muss für eine Aufgabe die Nullstellen bestimmen. An sich ja kein Problem, aber bei dieser Gleichnung komme ich nicht weiter. So habe ich es versucht sie zu lösen, aber am Ende merkte ich, dass es nichts bringt, wie ich es rechne.
Sie sieht wie folgt aus:

k*x²- k²*x=0  / +k²*x
k*x² = k²*x / :k
x² = k*x


Könnt ihr mir die weiterhelfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mi 19.11.2008
Autor: Marcel

Hallo,

> Hallo,
>  behandel in der Schule gerade Integralrechnung und muss
> für eine Aufgabe die Nullstellen bestimmen. An sich ja kein
> Problem, aber bei dieser Gleichnung komme ich nicht weiter.
> So habe ich es versucht sie zu lösen, aber am Ende merkte
> ich, dass es nichts bringt, wie ich es rechne.
>  Sie sieht wie folgt aus:
>  
> k*x²- k²*x=0  / +k²*x
>  k*x² = k²*x / :k

habt ihr irgendeine Voraussetzung an [mm] $\,k\,$? [/mm] Die obige Division darfst Du nur für $k [mm] \not=0$ [/mm] durchführen (wobei der Fall [mm] $k\,=\,0$ [/mm] nicht besonders interessant ist, aber notfalls musst Du da doch eine Fallunterscheidung machen).

>  x² = k*x
>  
>
> Könnt ihr mir die weiterhelfen?

Ja klar, also für $k [mm] \not=0$ [/mm] ist die letzte Gleichung zur Ausgangsgleichung äquivalent. Jetzt mache wieder eine Fallunterscheidung:
Was ist für [mm] $x\,=\,0$? [/mm] Und für $x [mm] \not=0$ [/mm] kannst Du nochmal durch [mm] $\,x\,$ [/mm] dividieren.

P.S.:
Ein anderer Lösungsweg wäre:
[mm] $$k*x^2- k^2*x=0$$ [/mm]
[mm] $$\gdw$$ [/mm]
[mm] $$k*x(x-k)=0\,.$$ [/mm]

Dann kann man, wenn man sich daran erinnert, dass ein (endliches) Produkt genau dann [mm] $\,=\,0$ [/mm] ist, wenn (mindestens) einer der Faktoren [mm] $\,=\,0$, [/mm] sofort alles ablesen.

Gruß,
Marcel

Bezug
        
Bezug
Nullstellenbestimmung: Lösung
Status: (Antwort) fertig Status 
Datum: 20:42 Mi 19.11.2008
Autor: Becca

Du musst ausklammern:

[mm] x*(k*x-k^2)=0 [/mm]
x1=0
[mm] k*x-k^2=0 /+k^2 [/mm]
[mm] k*x=k^2 [/mm]     /:k
x2=k

Lösung: 0 und k

Bezug
                
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Mi 19.11.2008
Autor: Marcel

Hallo,

> Du musst ausklammern:

  
nein, müssen muss man das nicht ;-) Es kann nur hilfreich sein.

> [mm]x*(k*x-k^2)=0[/mm]
>  x1=0
>  [mm]k*x-k^2=0 /+k^2[/mm]
>  [mm]k*x=k^2[/mm]     /:k
>  x2=k
>  
> Lösung: 0 und k

Sofern $k [mm] \not=0$. [/mm] Steht aber auch eigentlich alles in meiner Antwort bzw. das folgt daraus genauso (ich werde doch wohl noch erwarten dürfen, dass jemand für $x [mm] \not=0$ [/mm] die Terme [mm] $x^2/x$ [/mm] bzw. $x/x$ ausrechnen kann ;-)).

Gruß,
Marcel

Bezug
                        
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Do 20.11.2008
Autor: Becca

Hallo,  
  

> nein, müssen muss man das nicht ;-) Es kann nur hilfreich
> sein.
>  
> > [mm]x*(k*x-k^2)=0[/mm]
>  >  x1=0
>  >  [mm]k*x-k^2=0 /+k^2[/mm]
>  >  [mm]k*x=k^2[/mm]     /:k
>  >  x2=k
>  >  
> > Lösung: 0 und k
>
> Sofern [mm]k \not=0[/mm]. Steht aber auch eigentlich alles in meiner
> Antwort bzw. das folgt daraus genauso (ich werde doch wohl
> noch erwarten dürfen, dass jemand für [mm]x \not=0[/mm] die Terme
> [mm]x^2/x[/mm] bzw. [mm]x/x[/mm] ausrechnen kann ;-)).
>  
> Gruß,
>  Marcel


Ja okay hab das ja ungefähr gleichzeitig mit dir geschrieben. Wollte nur schnell zeigen wie ich das machen würde und das das eigentlich ganz einfach ist. Schön dass das jemand dann genauer ausführen kann.^^

Gruß becca

Bezug
        
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Mi 19.11.2008
Autor: salumon

Also wir hatten davor diese Gleichung:

k*x² - k= 0 / +k
k*x² = k
x² = 1
x1/2 = +/- 1

Bezug
                
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Mi 19.11.2008
Autor: Marcel

Hallo,

> Also wir hatten davor diese Gleichung:
>  
> k*x² - k= 0 / +k
>  k*x² = k
>  x² = 1
>  x1/2 = +/- 1

das letzte ist wohl als [mm] $x_{1,\,2}=\pm [/mm] 1$ zu lesen. Aber was Du uns nun damit sagen willst, ist mir jedenfalls nicht klar ^^

P.S.: Auch hier stimmt die Rechnung so nur für $k [mm] \not=0\,.$ [/mm] Ich finde das etwas schlampig, wenn das nirgends erwähnt wird.

Gruß,
Marcel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]