Nullstellenbestimmung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Diskutiere die Funktion [mm] f(x)=2/3*x^3+2*x^2+2 [/mm] |
Ich bin jetzt soweit, dass ich schon mal mit dem generellen aufbau einer kurvendiskussion angefangen (allgemeine eigenschaften, achsenschnittpunkte) und genau bei dem letzten punkt bin ich stehen geblieben.
ich habe für die nullstellen die gleichung erstmal auf normalform gebracht, sodass rauskommt: $
[mm] f(x)=x^3+3*x^2+3 [/mm] (hab die obige gleichung durch 2/3 geteilt).
doch jetzt hab ich das problem, dass ich nicht weiterkomme. ich weiß, dass ich die polynomdivision anwenden muss. jedoch brauch ich dafür doch schon eine nullstelle und die finde ich nicht.
danke für die hilfe!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi, senseless,
> Diskutiere die Funktion [mm]f(x)=2/3*x^3+2*x^2+2[/mm]
> Ich bin jetzt soweit, dass ich schon mal mit dem
> generellen aufbau einer kurvendiskussion angefangen
> (allgemeine eigenschaften, achsenschnittpunkte) und genau
> bei dem letzten punkt bin ich stehen geblieben.
> ich habe für die nullstellen die gleichung erstmal auf
> normalform gebracht, sodass rauskommt: $
> [mm]f(x)=x^3+3*x^2+3[/mm] (hab die obige gleichung durch 2/3
> geteilt).
Dann darfst Du aber NICHT schreiben: f(x) = ..., denn der neue Funktionsterm beschreibt eine andere Funktion: deren Graph ist im Vergleich zum ursprunglichen um den Faktor 1,5 in y-Richtung gestreckt! Neuer Graph => neue Funktion!
Merke: Niemals einen Funktionsterm abändern!
Wie macht man's dann?
Ganz einfach:
Zur Berechnung der NS zunächst den Funktionsterm "GLEICH 0 SETZEN":
[mm] 2/3*x^{3} +2x^{2} [/mm] + 2 = 0
Dann erst mit 3/2 multiplizieren:
[mm] x^{3} [/mm] + [mm] 3x^{2} [/mm] + 3 = 0.
(Für die Ableitungen musst Du aber wieder mit dem ursprünglichen Term von f(x) rechnen!)
> doch jetzt hab ich das problem, dass ich nicht
> weiterkomme. ich weiß, dass ich die polynomdivision
> anwenden muss. jedoch brauch ich dafür doch schon eine
> nullstelle und die finde ich nicht.
Kein Wunder! Die (einzige) NS liegt bei etwa -3,3; Du kannst sie nur näherungsweise ermitteln.
Und dass es die einzige ist, kriegst Du NICHT durch Polynomdivision raus, sondern NACH der Berechnung der Extrempunkte: Da der Funktionsgraph von [mm] -\infty [/mm] nach [mm] +\infty [/mm] verläuft und der Tiefpunkt OBERHALB der x-Achse liegt, kann es nur eine einzige Nullstelle geben.
mfG!
Zwerglein
|
|
|
|