www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Nullstellenberechnung Polynom
Nullstellenberechnung Polynom < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung Polynom: Funktion dritten Grades.
Status: (Frage) beantwortet Status 
Datum: 09:33 Mo 06.05.2013
Autor: Kuise

Aufgabe
Gegeben sei die Funktion f(x)= -1/2x³+ 2,5x² -2x. Berechnen Sie die Nullstellen.

Ich habe die erste Nullstelle errechnet indem ich ausklammerte.

Also (-1/2x²) + (2,5x) - (2)     (*x) bedeutet x1= =0│0

Dann bleibt weiter noch f(x)=-1/2x² + 2,5x - 2  ---> (*2 um mit pq Formel rechnen zu können)

f(x)=-x² + 5x - 4

Eingesetzt in die pq Formel errechne ich jetzt für x2,3 = -4│0 und -1│0, das ist aber genau Spiegelverkehrt, denn die Nullstellen wären bei 4 und 1.

Was mache ich falsch? Ich vermute, beim Ausklammern, aber ich weiß es nicht. Danke für die Hilfe im Voraus.

        
Bezug
Nullstellenberechnung Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 09:47 Mo 06.05.2013
Autor: Diophant

Hallo,

> Gegeben sei die Funktion f(x)= -1/2x³+ 2,5x² -2x.
> Berechnen Sie die Nullstellen.
> Ich habe die erste Nullstelle errechnet indem ich
> ausklammerte.

>

> Also (-1/2x²) + (2,5x) - (2) (*x) bedeutet x1= =0│0

>

Du meinst wohl das richtige, aber deine Schreibweisen sind ehrlich gesagt völlig unbrauchbar. Schreibe das so:

[mm] -\bruch{1}{2}x^3+\bruch{5}{2}x^2-2x=0 [/mm] <=>

[mm] x*\left(-\bruch{1}{2}x^2+\bruch{5}{2}x-2\right)=0 [/mm] =>

[mm] x_1=0 [/mm]

> Dann bleibt weiter noch f(x)=-1/2x² + 2,5x - 2 ---> (*2
> um mit pq Formel rechnen zu können)

>

> f(x)=-x² + 5x - 4

Auch das kann man so nicht machen. Die Funktion f ist im Zusammenhang der Aufgabe definiert, und außerdem macht es keinen Sinn, einen Faktor erneut als Funktion zu bezeichnen. Es ist

[mm] -\bruch{1}{2}x^2+\bruch{5}{2}x-2=0 [/mm] <=>

[mm] -x^2+5x-4=0 [/mm]

>

> Eingesetzt in die pq Formel errechne ich jetzt für x2,3 =
> -4│0 und -1│0, das ist aber genau Spiegelverkehrt, denn
> die Nullstellen wären bei 4 und 1.

>

> Was mache ich falsch?

Die pq-Formel gilt ausschließlich für quadratische Gleichungen der Form

[mm] x^2+px+q=0 [/mm]

Du musst also vor der Anwendung der Formel noch mit -1 multiplizieren, oder besser gleich zu Beginn mit -2.


Gruß, Diophant

Bezug
                
Bezug
Nullstellenberechnung Polynom: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:50 Mo 06.05.2013
Autor: Kuise

Danke, ich habs verstanden :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]