www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Nullstellenberechnung
Nullstellenberechnung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung: Idee
Status: (Frage) beantwortet Status 
Datum: 17:39 So 02.12.2012
Autor: JamesBlunt

Aufgabe
Berechnen Sie die Nullstellen der Schar in Abhängigkeit von t
ft(x) = (t+1)x - [mm] 1/3tx^{3} [/mm]

Ich setze die Funktion = 0:
0 = (t+1)x - [mm] 1/3tx^{3} [/mm]

Das löse ich doch jetzt nach x auf, oder? Und da habe ich Probleme.
0 = tx + x  - [mm] 1/3tx^{3} [/mm]
-x= tx - [mm] 1/3tx^{3} [/mm]

WIe gehts weiter?

Danke und lg

        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 02.12.2012
Autor: Walde

Hi James,

> Berechnen Sie die Nullstellen der Schar in Abhängigkeit
> von t
>  ft(x) = (t+1)x - [mm]1/3tx^{3}[/mm]
>  Ich setze die Funktion = 0:
>  0 = (t+1)x - [mm]1/3tx^{3}[/mm]
>  
> Das löse ich doch jetzt nach x auf, oder? Und da habe ich
> Probleme.

Klammere an dieser Stelle ein x aus und überlege, wann die einzelnen Faktoren Null werden. Denn ist einer der Faktoren Null, ist auch ein Produkt gleich Null.

Lg walde

Bezug
                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 So 02.12.2012
Autor: JamesBlunt

Hm, ja eigentlich ist das ja nur der Fall, wenn x=0.. Aber wie ist das dann mit der Abhängigkeit von t?

Oder sagt man dann, dass das auch der Fall ist, wenn t=0?

Bezug
                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 So 02.12.2012
Autor: M.Rex

Hallo


> Hm, ja eigentlich ist das ja nur der Fall, wenn x=0..

Wieso. Du hast doch zwei Faktoren:

$ [mm] f_{t}(x)=(t+1)\cdot [/mm] x - [mm] \frac{t}{3}\cdot x^{3} [/mm] $
$ [mm] f_{t}(x)=x\cdot\left(t+1-\frac{t}{3}\cdot x^{2}\right)$ [/mm]

Nun hast du einerseits, wie du korrekt erkannt hast x=0.
Aber du hast die Gleichung
[mm] t+1-\frac{t}{3}\cdot x^{2}=0 [/mm]
noch nicht behandelt.

> Aber wie ist das dann mit der Abhängigkeit von t?
>  
> Oder sagt man dann, dass das auch der Fall ist, wenn t=0?

Marius


Bezug
                                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 So 02.12.2012
Autor: JamesBlunt

x= [mm] \wurzel{\bruch{-t-1}{-t/3}} [/mm]

hilft mir das?

Bezug
                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 02.12.2012
Autor: M.Rex

Hallo


> x= [mm]\wurzel{\bruch{-t-1}{-t/3}}[/mm]
>  
> hilft mir das?  

Fast, du hast eine Lösung vergessen, es gilt [mm] x^{2}=a\Rightarrow x=\pm\sqrt{a} [/mm]

Außerdem hast du das hier nicht schön umgeformt, ein Doppelbruch und soviele Minuszeichen kannst du noch lösen.

$ [mm] t+1-\frac{t}{3}\cdot x^{2}=0 [/mm] $
$ [mm] \Leftrightarrow-\frac{t}{3}\cdot x^{2}=-t-1 [/mm] $
$ [mm] \Leftrightarrow x^{2}=3(t+1) [/mm] $

Also:
[mm] x_{2;3}=\pm\sqrt{3(t+1)} [/mm]

Marius


Bezug
                                                
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 So 02.12.2012
Autor: JamesBlunt

Danke schön :)

Bezug
                                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 So 02.12.2012
Autor: Steffi21

Hallo, du möchtest lösen

[mm] t+1-\bruch{t}{3}x^2=0 [/mm]

[mm] t+1=\bruch{t}{3}x^2 [/mm]

[mm] x^2=\bruch{3(t+1)}{t} [/mm]

[mm] x_2_3=\pm\wurzel{\bruch{3(t+1)}{t}} [/mm]

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]