www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Nullstellenberechnung
Nullstellenberechnung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Mo 28.04.2008
Autor: Ivan

Aufgabe
{f(x)}= [mm] \bruch{1}{12}x^{4}-\bruch{1}{6}x^{3}-x^{2} [/mm]

Hallo alle Zusammen!

Ich habe ein Problem mit der Polynomdivision, ich weiss nicht wie ich mit den Brüchen rechnen soll.

Wenn ich dann mit den Dezimalzahlen rechne dann bleibt mir ein Rest von [mm] 0,75x^{2}. [/mm]

Muss ich als erstes die gesammten Brüche gleichnamig machen? oder ganz Stur die Polynomdivision durchführen?

Vielen Dank für eure Mühen

euer

Ivan

        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mo 28.04.2008
Autor: Bastiane

Hallo Ivan!

> {f(x)}= [mm]\bruch{1}{12}x^{4}-\bruch{1}{6}x^{3}-x^{2}[/mm]
>  Hallo alle Zusammen!
>  
> Ich habe ein Problem mit der Polynomdivision, ich weiss
> nicht wie ich mit den Brüchen rechnen soll.
>  
> Wenn ich dann mit den Dezimalzahlen rechne dann bleibt mir
> ein Rest von [mm]0,75x^{2}.[/mm]
>  
> Muss ich als erstes die gesammten Brüche gleichnamig
> machen? oder ganz Stur die Polynomdivision durchführen?

Durch was möchtest du denn dividieren? Im Prinzip ist es egal, ob du mit Brüchen oder mit Dezimalzahlen rechnest. Mach' es so, wie du's am besten kannst.
Vielleicht postest du auch mal deine Rechnung, dann können wir gucken, ob du irgendwo einen Fehler gemacht hast.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mo 28.04.2008
Autor: Bastiane

Hallo nochmal!

> {f(x)}= [mm]\bruch{1}{12}x^{4}-\bruch{1}{6}x^{3}-x^{2}[/mm]

Du brauchst übrigens gar keine Polynomdivision zu machen. Du kannst [mm] x^2 [/mm] ausklammern und dann die MBPQFormel anwenden. Insgesamt erhältst du drei Nullstellen, allerdings zwei davon mit recht "krummen" Werten (Brüche).

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Nullstellenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mo 28.04.2008
Autor: Ivan

Danke für deine schnelle Antwort und entschuldige meine Späte Rückantwort.

Ich habe durch Probieren die erste Nullstelle Rausgefunden die -1 ist und durch ansehen der Fkt. ist mir aufgefallen das die zweite Nullstelle 0 ist da überall ein x ist .

Ich rechne mit der abc Formel was aber zum selben ergebniss kommt.

Wenn ich jetzt x² ausklammer ist dann meine Nullsterllen [mm] \pm0 [/mm] ??

Bezug
                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mo 28.04.2008
Autor: schachuzipus

Hallo Ivan,

> Danke für deine schnelle Antwort und entschuldige meine
> Späte Rückantwort.
>  
> Ich habe durch Probieren die erste Nullstelle Rausgefunden
> die -1 ist [notok]

Wenn ich mal [mm] $\red{-1}$ [/mm] einsetze, komme ich auf [mm] $\frac{1}{12}\red{(-1)}^4-\frac{1}{6}\red{(-1)}^3-\red{(-1)}^2=..=-\frac{3}{4}$ [/mm]

Und das ist [mm] $\neq [/mm] 0$

> und durch ansehen der Fkt. ist mir aufgefallen
> das die zweite Nullstelle 0 ist da überall ein x [ok] ist .
>  
> Ich rechne mit der abc Formel was aber zum selben ergebniss
> kommt.
>
> Wenn ich jetzt x² ausklammer ist dann meine Nullsterllen
> [mm]\pm0[/mm] ?? [ok]

wobei [mm] $\pm [/mm] 0=0$ Es ist 0 also eine doppelte NST.

Vllt. klammerst du statt [mm] $x^2$ [/mm] mal [mm] $\frac{1}{12}x^2$ [/mm] aus, dann fällt das Berechnen der weiteren NSTen leichter...

Also [mm] $\frac{1}{12}x^4-\frac{1}{6}x^3-x^2=\frac{1}{12}x^2\cdot{}\left(x^2-2x-12\right)$ [/mm]

Damit hast du also für den einen Teil [mm] $\frac{1}{12}x^2$ [/mm] deine berechnete doppelte NST $x=0$ und für den Rest [mm] $(x^2-2x-12)$ [/mm] nimm mal die pq-Formel und rechne nochmal nach...


Gruß

schachuzipus


Bezug
                                
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Mo 28.04.2008
Autor: Ivan

Danke für deinen Tipp!

Ich habe jetzt Die Nullstellen
N1=0 ; n2= 4,60; 2,605

Ist das richtig?

Re.wg. Ich habe [mm] \bruch{1}{12}x^{2} [/mm] ausgeklammert und wegfallen lassen.

und dann mit der abc Formel gerechnet und kam zu diesem Ergebniss.



Bezug
                                        
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Mo 28.04.2008
Autor: schachuzipus

Hallo nochmal,

> Danke für deinen Tipp!
>  
> Ich habe jetzt Die Nullstellen
>  N1=0 [ok] ; n2= 4,60;[ok]  [mm] \red{n_3=-}2,605 [/mm]

Hier ist ein VZF !

Schreibe aber besser die Nullstellen nicht so gerundet, sondern als [mm] $n_1=0, n_2=1+\sqrt{13}, n_3=1-\sqrt{13}$ [/mm]

>  
> Ist das richtig?
>  
> Re.wg. Ich habe [mm]\bruch{1}{12}x^{2}[/mm] ausgeklammert und
> wegfallen lassen.
>  
> und dann mit der abc Formel gerechnet und kam zu diesem
> Ergebniss.
>  
>  

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]