Nullstellen ohne Polynomdivisi < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Do 03.11.2011 | Autor: | BenBen |
Aufgabe | Bestimmt die Nullstellen der Funtion f(x) ohne Polynomdivision und Taschenrechner.
f(x)= [mm] x^3-3x^2+x+1 [/mm] |
Wie kann ich die Nullstellen am Besten betimmen ohne Polynomdivision? Weil pq-Formel scheint hier auch nicht der Weg zur Lösung zu sein.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:14 Do 03.11.2011 | Autor: | ONeill |
Hi!
> Bestimmt die Nullstellen der Funtion f(x) ohne
> Polynomdivision und Taschenrechner.
> f(x)= [mm]x^3-3x^2+x+1[/mm]
> Wie kann ich die Nullstellen am Besten betimmen ohne
> Polynomdivision? Weil pq-Formel scheint hier auch nicht der
> Weg zur Lösung zu sein.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Bei dieser Funktion siehst du die erste Nullstelle ja bereits, wenn du scharf hinsiehst. Dann kannst du mit dem Kurvenverlauf links und rechts von der Nullstelle argumentieren. Der prinzipielle Verlauf einer Funktion dritten Grades ist dir ja bekannt. Wie viele Nullstellen sind also mindestens vorhanden und wie viele maximal? Da kann man die Möglichkeiten relativ schnell einschränken.
Ansonsten gibt es noch das Hornerschema oder das Newtonverfahren. Bei beiden bin ich sehr aus der Übung, bin mir aber recht sicher dass man damit auch zum Ziel kommt.
Ich lasse die Frage mal "halb unbeantwortet".
Gruß Christian
|
|
|
|
|
Mein Ansatz wäre: Eine Nullstelle ist relativ leicht zu "raten".
Und dann gibt es Zusammenhänge zwischen den Koeffizienten des Polynoms und der Summe sowie dem Produkt der Nullstellen. Daraus lassen sich dann die beiden fehlenden Nullstellen berechen.
|
|
|
|