www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Nullstellen, Abschätzung
Nullstellen, Abschätzung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen, Abschätzung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:21 Sa 03.05.2008
Autor: Denise86

Aufgabe
a) Berechnen Sie die Abschätzungen für die Nullstellen folgender Funktionen:
(i) p(x) = [mm] x^{5}+5x^{4}-x-1 [/mm]
(ii) p(x) = [mm] x^{8}+0,5x^{7}-0,02x^{3}-0,1 [/mm]
(iii) p(x) = [mm] x^{6}-0.4x^{5}+0,16x^{4}-0,064x^{3}+0,0256x^{2}-0,01024x-0,004096 [/mm]
(iv) p(x)= [mm] x^{7}+0,5x^{6}+2x^{5}+4x^{4}+20x^{3}+100x^{2}+1000x+1 [/mm]

b) Welche der beiden Abschätzungen (1) [mm] |x|\le [/mm] max {1, [mm] \summe_{i=1}^{n}|a_{i}|} [/mm] und (2) [mm] |x|\le [/mm] 2 max [mm] {\wurzel[i]{|a_{i}|}, i=1,...,n} [/mm]  ist in Abhängigkeit von a [mm] \in \IR [/mm] günstiger für das Polynom p(x)= [mm] x^{n}+ax^{n-1}+ax^{n-2}+...+ax+a? [/mm]

bei der b) weiß ich nicht wie ich vorgehen soll um zu beweisen was günstiger ist. Welche Kriterien gibt es für die Entscheidung?

        
Bezug
Nullstellen, Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Sa 03.05.2008
Autor: Denise86

Aufgabe
a) Berechnen Sie die Abschätzungen für die Nullstellen folgender Funktionen:
(i) p(x) =
(ii) p(x) =
(iii) p(x) =
(iv) p(x)=  

Wollte fragen ob folgende Antworten bzw. Berechnungen zu a) richtig sind, bin mir besonders bei (i) und (ii) nicht sicher, da ich nicht weiß ob ich die fehlende potenz auch berücksichtigen soll, und zwar sieht es bei mir folgendermaßen aus:

(i) (1) |x| [mm] \le [/mm]   max {1, 5+1+1} = max {1, 7} = 7
    (2) |x| [mm] \le [/mm] 2*max [mm] {\wurzel[1]{5}, \wurzel[2]{0}, \wurzel[3]{0}, \wurzel[4]{1}, \wurzel[5]{1}} [/mm] = [mm] 2*\wurzel[1]{5} [/mm] = 10

(ii)(1) |x| [mm] \le [/mm]   max {1, 0.5+0.02+0.1} = max {1, 0.62} = 1
    (2) |x| [mm] \le [/mm] 2*max [mm] {\wurzel[1]{0.5}, \wurzel[2]{0}, \wurzel[3]{0}, \wurzel[4]{0}, \wurzel[5]{0.02}, \wurzel[6]{0.1}} [/mm] = [mm] 2*\wurzel[6]{0.1} \approx [/mm] 2.39  

(iii)(1) |x| [mm] \le [/mm]   max {1, 0.663936} = 1
     (2) |x| [mm] \le [/mm] 2*max [mm] {\wurzel[1]{0.4}, \wurzel[2]{0.4}, \wurzel[3]{0.4}, \wurzel[4]{0.4}, \wurzel[5]{0.4}, \wurzel[6]{0.4}} [/mm] = 2*0.4 = 0.8

(iv) (1) |x| [mm] \le [/mm]   max {1, 1127.5} = 1127.5
     (2) |x| [mm] \le [/mm] 2*max [mm] {\wurzel[1]{0.5}, \wurzel[2]{2}, \wurzel[3]{4}, \wurzel[4]{20}, \wurzel[5]{100}, \wurzel[6]{1000}, \wurzel[7]{1}} [/mm] = [mm] 2*\wurzel[6]{1000} \approx [/mm] 6.32

Bezug
                
Bezug
Nullstellen, Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Di 06.05.2008
Autor: rainerS

Hallo Denise!

> a) Berechnen Sie die Abschätzungen für die Nullstellen
> folgender Funktionen:
> (i) p(x) =
> (ii) p(x) =
> (iii) p(x) =
> (iv) p(x)=
> Wollte fragen ob folgende Antworten bzw. Berechnungen zu a)
> richtig sind, bin mir besonders bei (i) und (ii) nicht
> sicher, da ich nicht weiß ob ich die fehlende potenz auch
> berücksichtigen soll, und zwar sieht es bei mir
> folgendermaßen aus:

Ich bin mir auch nicht sicher, da ich die Abschätzung mit den Wurzeln nicht kenne, aber mir sind ein paar Kleinigkeiten aufgefallen.

>  
> (i) (1) |x| [mm]\le[/mm]   max {1, 5+1+1} = max {1, 7} = 7
>      (2) |x| [mm]\le[/mm] 2*max [mm]{\wurzel[1]{5}, \wurzel[2]{0}, \wurzel[3]{0}, \wurzel[4]{1}, \wurzel[5]{1}}[/mm]
> = [mm]2*\wurzel[1]{5}[/mm] = 10
>  
> (ii)(1) |x| [mm]\le[/mm]   max {1, 0.5+0.02+0.1} = max {1, 0.62} =
> 1
>      (2) |x| [mm]\le[/mm] 2*max [mm]{\wurzel[1]{0.5}, \wurzel[2]{0}, \wurzel[3]{0}, \wurzel[4]{0}, \wurzel[5]{0.02}, \wurzel[6]{0.1}}[/mm]
> = [mm]2*\wurzel[6]{0.1} \approx[/mm] 2.39  

Hier müsste es doch [mm] $\wurzel[8]{0,1}$ [/mm] heißen, oder? Und 2.39 kann nicht richtig sein, das muss zwischen 1 und 2 liegen, da alle Radikanden kleiner als 1 sind.

>
> (iii)(1) |x| [mm]\le[/mm]   max {1, 0.663936} = 1
>       (2) |x| [mm]\le[/mm] 2*max [mm]{\wurzel[1]{0.4}, \wurzel[2]{0.4}, \wurzel[3]{0.4}, \wurzel[4]{0.4}, \wurzel[5]{0.4}, \wurzel[6]{0.4}}[/mm]
> = 2*0.4 = 0.8

Da hast du es falsch aufgeschrieben, aber richtig gerechnet:

[mm]|x| \le 2*\max \{\wurzel[1]{0.4}, \wurzel[2]{0.16}, \wurzel[3]{0.064}, \wurzel[4]{0.0256}, \wurzel[5]{0.01024}, \wurzel[6]{0.004096}\} = 0.8[/mm]

>  
> (iv) (1) |x| [mm]\le[/mm]   max {1, 1127.5} = 1127.5
>       (2) |x| [mm]\le[/mm] 2*max [mm]{\wurzel[1]{0.5}, \wurzel[2]{2}, \wurzel[3]{4}, \wurzel[4]{20}, \wurzel[5]{100}, \wurzel[6]{1000}, \wurzel[7]{1}}[/mm]
> = [mm]2*\wurzel[6]{1000} \approx[/mm] 6.32

Viele Grüße
    Rainer

Bezug
        
Bezug
Nullstellen, Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Di 06.05.2008
Autor: rainerS

Hallo Denise!

> a) Berechnen Sie die Abschätzungen für die Nullstellen
> folgender Funktionen:
>  (i) p(x) = [mm]x^{5}+5x^{4}-x-1[/mm]
>  (ii) p(x) = [mm]x^{8}+0,5x^{7}-0,02x^{3}-0,1[/mm]
>  (iii) p(x) =
> [mm]x^{6}-0.4x^{5}+0,16x^{4}-0,064x^{3}+0,0256x^{2}-0,01024x-0,004096[/mm]
>  (iv) p(x)=
> [mm]x^{7}+0,5x^{6}+2x^{5}+4x^{4}+20x^{3}+100x^{2}+1000x+1[/mm]
>  
> b) Welche der beiden Abschätzungen (1) [mm]|x|\le \max \{1, \summe_{i=1}^{n}|a_{i}|\}[/mm] und (2) [mm]|x|\le 2 \max \{\wurzel[i]{|a_{i}|}, i=1,...,n\}[/mm]  ist in Abhängigkeit von [mm]a \in \IR[/mm] günstiger für das Polynom [mm]p(x)= x^{n}+ax^{n-1}+ax^{n-2}+...+ax+a?[/mm].

> bei der b) weiß ich nicht wie ich vorgehen soll um zu
> beweisen was günstiger ist. Welche Kriterien gibt es für
> die Entscheidung?

Setze dein Polynom in beide Abschätzungen ein: du hast doch:

[mm]a_n = a_{n-1} = \dots = a_1 = a [/mm].

Tipp: für die Wurzeln unterscheide die drei Fälle $|a|<1$, $|a|=1$, $|a|>1$.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]