www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Nullstellen
Nullstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen: 1 Ableitung
Status: (Frage) beantwortet Status 
Datum: 18:54 Di 02.09.2008
Autor: Tokhey-Itho

Aufgabe
[mm] f(x)=x^2-kx^3 [/mm]

f'(x)=2x-3kx
f''(x)=2-3k

f'(x)=2x-3k

Hallo,

wie berechnet man in diesem Beispiel die Nullstellen?Man kann es nicht nach x auflösen,sonst hat man das hier stehen:
2x-3kx=0 :2
x-3kx=0

Ausklammern funktioniert in diesem Fall auch nicht,sonst steht da :
x(2-3k) ,dann ist x=0 aber in 2-3k steht kein x mehr,sodass man da nichts ausrechnen kann.Oder hab ich mich irgendwo vertan?

Gruss,

Tokhey-Itho

        
Bezug
Nullstellen: Rechenfehler
Status: (Antwort) fertig Status 
Datum: 18:57 Di 02.09.2008
Autor: Loddar

Hallo Tokhey-Itho!


Du hast Dich bei der 1. Ableitung vertan. Diese muss lauten:
$$f'_k(x) \ = \ [mm] 2x-3k*x^{\red{2}}$$ [/mm]

Für die Bestimmung der Nullstelle(n) dieser Ableitung am besten den Term $3k*x_$ ausklammern.


Gruß
Loddar


Bezug
                
Bezug
Nullstellen: sorry
Status: (Frage) beantwortet Status 
Datum: 19:06 Di 02.09.2008
Autor: Tokhey-Itho

Aufgabe
[mm] f'(x)=2x-3kx^2 [/mm]
x=0, V       x(2-3kx)
               2-3kx=0 +2
                -3kx=2 +3 *k
                  x=2+3k

Nullstellen:x=0, x= 1,5

Ist das richtig so?
Sorry,ich hab das hier in meinen Unterlagen so stehen.

Bezug
                        
Bezug
Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Di 02.09.2008
Autor: schachuzipus

Hallo TI,

> [mm]f'(x)=2x-3kx^2[/mm]
>  x=0, V       x(2-3kx)
>                 2-3kx=0 +2
>                  -3kx=2 +3 *k
>                    x=2+3k
>  
> Nullstellen:x=0, x= 1,5
>  
> Ist das richtig so?

Hmm, die erste Nullstelle $x=0$ stimmt, die zweite aber nicht, die ist doch von $k$ abhängig.

Außerdem stimmt der erste Rechenschritt nicht.

Die Ableitung ist richtig [ok]

Also berechnen wir [mm] $f_k'(x)=0$ [/mm]

[mm] $\gdw 2\cdot{}x-3\cdot{}k\cdot{}x^2=0$ [/mm]

$x$ ausklammern

[mm] $\gdw \red{x}\cdot{}\blue{(2-3\cdot{}k\cdot{}x)}=0$ [/mm]

Nun ist ein Produkt genau dann =0, wenn mindestens einer der Faktoren =0 ist, das bedeutet also, das ganze wird Null

[mm] $\gdw \red{x=0}$ [/mm] oder [mm] $\blue{2-3\cdot{}k\cdot{}x=0}$ [/mm]

[mm] $\gdw \red{x=0}$ [/mm] oder [mm] $\blue{2=3\cdot{}k\cdot{}x}$ [/mm]

Noch durch [mm] $3\cdot{}k$ [/mm] teilen (falls [mm] $k\neq [/mm] 0$ ist)

[mm] $\Rightarrow [/mm] x=0$ oder [mm] $\frac{2}{3k}=x$ [/mm]

Damit hast du die beiden Nullstellen der ersten Ableitung berechnet, die erste ist unabhängig von k, nämlich $x=0$, die zweite ist abhängig von $k$

Das Teilen durch $3k$ ist ja nur für [mm] $k\neq [/mm] 0$ zulässig, also müssen wir uns das Ganze für [mm] $\green{k=0}$ [/mm] gesondert angucken:

[mm] $f_{\green{0}}'(x)=2\cdot{}x-3\cdot{}\green{0}\cdot{}x^2=2x$ [/mm]

Das hat welche NST(en)?


>  Sorry,ich hab das hier in meinen Unterlagen so stehen.

Dann hast du's bestimmt falsch abgeschrieben ;-)


LG

schachuzipus


Bezug
                                
Bezug
Nullstellen: Vielen Dank!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Di 02.09.2008
Autor: Tokhey-Itho

Aufgabe
...

Vielen Dank für die Berechnung udn dass du mit den gesamten Rechenweg gezeigt hast!Du hast mir wirklich weiter geholfen.


Gruß,

Tokhey-Itho

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]