www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Nullstelle e. Funktionenschar
Nullstelle e. Funktionenschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstelle e. Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Mi 24.01.2007
Autor: splin

Aufgabe
Gegeben: f(x)= [mm] x-ke^x [/mm]
Frage: Für welche k-Werte haben die Funktionen f eine Nullstelle?

=> [mm] x-ke^x=0 [/mm]
=> [mm] -ke^x=-x [/mm]
=> [mm] -k=-\bruch{x}{e^x} [/mm]
=> [mm] k=\bruch{x}{e^x} [/mm]

Kann man das noch ergentwie vereinfachen?
Und für welche k-Werte haben denn die Funktionen eine Nullstelle?

MfG Splin

        
Bezug
Nullstelle e. Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Mi 24.01.2007
Autor: Zwerglein

Hi, splin,

> Gegeben: f(x)= [mm]x-ke^x[/mm]
>  Frage: Für welche k-Werte haben die Funktionen f eine
> Nullstelle?
>  => [mm]x-ke^x=0[/mm]

>  => [mm]-ke^x=-x[/mm]

>  => [mm]-k=-\bruch{x}{e^x}[/mm]

>  => [mm]k=\bruch{x}{e^x}[/mm]

Ich glaub' fast, Du hast die Aufgabe ein wenig "unterschätzt"!
Die musst Du ganz anders angehen!

(1) Für k=0 hat die zugehörige Funktion trivialerweise eine Nullstelle (x=0)

(2) Fall k < 0:
Zunächst mal gilt hier:

[mm] \limes_{x\rightarrow-\infty} [/mm] f(x) = [mm] -\infty [/mm]

[mm] \limes_{x\rightarrow+\infty} [/mm] f(x)  = [mm] +\infty [/mm]
Wegen der Stetigkeit von f muss es demnach mindestens eine Nullstelle geben.

Nun bilden wir die Ableitung und sehen: f'(x) = 1 - [mm] k*e^{x} [/mm] > 0 für alle x.
Daher ist für k < 0 der zugehörige Funktionsgraph echt mon. wachsend.

Ergebnis: Es kann nur EINE Nullstelle geben!

(3) Der Fall k > 0 ist wesentlich schwieriger,
denn beide Grenzwerte sind [mm] -\infty. [/mm]
Berechnen wir den Hochpunkt (das kannst Du sicher selbst!), so erhalten wir:
H(-ln(k) | -ln(k)-1)
Genau EINE Nullstelle (so war das doch gefragt - oder?!) hat diejenige Funktion, deren Hochpunkt auf der x-Achse liegt, also: [mm] y_{H} [/mm] = 0
Das ist - wie man leicht berechnet - der Fall für k = [mm] e^{-1}. [/mm]

PS: Wenn's nur darum geht, ob' die Funktion ÜBERHAUPT Nullstelle(n) hat, kommt im 2. Fall 0 < k [mm] \le e^{-1} [/mm] raus!

mfG!
Zwerglein

  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]