www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Nullstelle bestimmen
Nullstelle bestimmen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstelle bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:49 Mi 06.04.2011
Autor: Mathintosh

Aufgabe
[mm] k(t)=e^{0.2t}*\ln(4t) [/mm]

Bestimmen Sie bei obiger Funktion die Nullstellen und die Steigungen an den Stellen t1= 1 und t2= 10 [Genauigkeit: 5 Stellen n.d.K.].



Morgen,

Ich bekomme nicht die Nullstelle raus. Ich weiss, dass ich die Funktion gleich null setzen muss.
Wie macht man das mit e und ln?

Danek für die Antwort.

        
Bezug
Nullstelle bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Mi 06.04.2011
Autor: fred97


> k(t) = [mm]e^0.2t[/mm] * ln(4t)
>  
> Bestimmen Sie bei obiger Funktion die Nullstellen und die
> Steigungen an den Stellen t1= 1 und t2= 10 [Genauigkeit: 5
> Stellen n.d.K.].
>  Morgen,
>  
> Ich bekomme nicht die Nullstelle raus. Ich weiss, dass ich
> die Funktion gleich null setzen muss.
>  Wie macht man das mit e und ln?

k soll wohl so aussehen:

         $  k(t) [mm] =e^{0.2t} [/mm] * ln(4t)$

Es ist k(t)=0 genau dann, wenn [mm] e^{0.2t}=0 [/mm] oder ln(4t) =0.

Ist  [mm] e^{0.2t}=0 [/mm]  möglich ?  Welche Lösung hat  ln(4t) =0 ?

FRED

>  
> Danek für die Antwort.


Bezug
                
Bezug
Nullstelle bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:20 Mi 06.04.2011
Autor: Mathintosh

Danke für die Hilfe, ich habs herausgefunden.

Noch eine Frage zur Steigung für t=10

Die ABleitung von k(t) ist
K'(t)= 0.2e^(0.2t) * ln(4t) + e^(0.2t) * (4t/4)

Für t=1 erhalte ich 1.56, was gemäss Lösung stimmt. Wenn ich für t 10 einsetzte komme ich auf etwas anderes.

Bezug
                        
Bezug
Nullstelle bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Mi 06.04.2011
Autor: M.Rex

Hallo

Deine Ableitung stimmt nicht.

[mm] k(t)=\underbrace{e^{0,2t}}_{u}\cdot\underbrace{\ln(4t)}_{v} [/mm]

Also:

[mm] k'(t)=\underbrace{0,2e^{0,2t}}_{u'}\cdot\underbrace{\ln(4t)}_{v}+\underbrace{e^{0,2t}}_{u}\cdot\underbrace{\frac{1}{4t}\cdot4}_{v'} [/mm]

Jetzt den hinteren Summanden noch kürzen, und wenn du magst, [mm] e^{0,2t} [/mm] ausklammern.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]