www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Nullfolge
Nullfolge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 So 21.05.2006
Autor: nathenatiker

Aufgabe
Sei [mm] a_{m} [/mm] := [mm] \begin{cases} \bruch{1}{m}, & \mbox{für } m \mbox{=2k} \\ \bruch{1}{1+2m}, & \mbox{für } m \mbox{=2k+1} \end{cases} [/mm]
für alle k [mm] \in \IN. [/mm]

1) Sei a [mm] \in \IR. [/mm] Zeigen sie: Gilt 0 [mm] \le [/mm] a < [mm] a_{m} [/mm] für alle m [mm] \in \IN., [/mm] dann ist a=0
2) Zeigen, sie [mm] a_{m} [/mm] ist eine Nullfolge.

Hallo,

bei aufgabe 1) habe ich zuerst eine Fallunterscheidung gemacht,
für m gerade gilt: 0 [mm] \le [/mm] a < [mm] \bruch{1}{m}. [/mm]
und für m ungerade gilt: 0 [mm] \le [/mm] a < [mm] \bruch{1}{1+2m}. [/mm]

Mein Problem ist jetzt, wie ich weitermachen soll. Also eigentlich ist es ja offensichtlich, dass [mm] \bruch{1}{m} [/mm] und [mm] \bruch{1}{1+2m} [/mm] Nullfolgen sind. Reicht es dann, wenn ich dementsprechend argumentiere?Oder kann man dass auch irgendwie zeigen?
Nächtes Problem wäre dann Aufgabe 2. Wenn man 1) gezeigt hat, kann man doch automatisch 2 daraus schlussfolgern??????
oder habe ich irgendwo einen Denkfehler drin?
Bitte helft mir.

MFG
NAthenatiker

        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 So 21.05.2006
Autor: FrankM

Hallo,

leider bin ich mir nicht ganz sicher, was du mit der aufgeschriebenen Reihe meinst. Ich interpretiere sie so:
[mm] a_n=\begin{cases} \bruch{1}{2n}, & \mbox{für } n \mbox{gerade} \\ \bruch{1}{4n+2}, & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]
zu 1) Annahme a>0, also a [mm] \neq [/mm] 0, also gibt es ein [mm] m_0 [/mm] mit [mm] \bruch{1}{m_0}
zu 2) nein du kannst aus 1) noch nicht 2) folgern, z.B. gilt 1) auch für die Folge:
[mm] a_n=\begin{cases} 0, & \mbox{für } n=1 \\ 1, & \mbox{sonst } \end{cases}. [/mm]
Der Unterschied zwischen 1) und 2) ist, dass in 1) nur ein Folgenglied gefunden werden muss, dass beliebig klein wird, während du bei 2) zeigen musst, dass die Folge ab einem  Glied beliebig klein ist.
Aber du weisst, dass alle [mm] a_n [/mm] positiv sind, und es gilt für alle n [mm] a_n\leq\bruch{1}{n}, [/mm] also ist [mm] a_n [/mm] eine Nullfolge.

Gruß
Frank

Bezug
                
Bezug
Nullfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Mo 22.05.2006
Autor: nathenatiker

Hallo,

Also, die Aufgenstellung mit Aufgabe ist erstmal korrekt aufgschrieben,

die Struktur der Aufgabe ist mir jetzt auch klar, nur der Beweis von 1) von FrankM müsste meiner Meinung nach falsch sein,oder? er schließt am Ende auf $ [mm] a_{m_0}
falls ich falsch liege, korrigiert mich, aber ich habe immernoch keinen schlüssigen Beweis für Aufgabe 1 hinbekommen.

MFG

Nathenatiker

Bezug
                        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mo 22.05.2006
Autor: FrankM

Hallo,

genau, du hast am Ende gezeigt, dass [mm] a_{m_0}
Gruß
Frank

Bezug
                                
Bezug
Nullfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Mo 22.05.2006
Autor: nathenatiker

HAllo,

aber wenn man einen Beweis durch Widerspruch führt, dann wiederlegt man doch während seines Beweis die (falsche) Annahme. Die sagst jetzt, dass a>0 sein soll, und während deines Beweises willst du doch diese Annahme wiederlegen. am Ende komst du auf die Aussage, dass $ [mm] a_{m_0}
hab ich da jetzt was grundlegendes falsch verstanden???????????
oder steh ich hier nur völlig aufm Schlauch, aber eigentlich kann dieser beweis nicht richtig sein.

ich hoffe es kann mal jemand anderes dazu etwas sagen.

MFG
nathenatiker

Bezug
                                        
Bezug
Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Mo 22.05.2006
Autor: Micha

Hallo!
> HAllo,
>  
> aber wenn man einen Beweis durch Widerspruch führt, dann
> wiederlegt man doch während seines Beweis die (falsche)
> Annahme. Die sagst jetzt, dass a>0 sein soll, und während
> deines Beweises willst du doch diese Annahme wiederlegen.
> am Ende komst du auf die Aussage, dass [mm]a_{m_0}
> damit wiederlegst du doch deine (falsche) Annahme nicht,
> oder?????
>  
> hab ich da jetzt was grundlegendes falsch
> verstanden???????????
>  oder steh ich hier nur völlig aufm Schlauch, aber
> eigentlich kann dieser beweis nicht richtig sein.
>  
> ich hoffe es kann mal jemand anderes dazu etwas sagen.

Das ist das klassische Beweisprinzip des indirekten Beweises. Angenommen man will eine Behauptung zeigen, hier z.B. das gilt
wenn $0 [mm] \le [/mm] a [mm] \le a_m$ [/mm] dann folgt $a=0$.

Dann kann man das tun, indem man annimmt, 0<a. Also man lässt die Folgerung (hier a=0) falsch werden, man nimmt aber die gleichen Voraussetzungen an. Im Verlaufe des Beweises kommt aber heraus, dass dann ein [mm] $m_0$ [/mm] existiert, sodass
[mm] $a_m_0 [/mm] < a$. Das verletzt aber die Voraussetzungen. Mit anderen Worten, man zeigt, dass es unter den Voraussetzungen nicht passieren kann, dass der gegenteilige Fall eintritt, ohne dass die Voraussetzungen verletzt werden.

Ist es jetzt etwas verständlicher geworden?

Gruß Micha ;-)

Bezug
        
Bezug
Nullfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:54 Di 23.05.2006
Autor: nathenatiker

Hallo,

ok danke für die Antworten,
hab mich irgendwie zusehr auf meiner Meinnung festgesessen,
nächste mal probier ich das ganze mal ein bisschen neutraler
anzugehen.

gruß
n

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]