www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Notation einer Abbildung
Notation einer Abbildung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notation einer Abbildung: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:44 Fr 04.11.2011
Autor: huzein

Aufgabe
Sei [mm] \IK=\IR [/mm] oder [mm] \IK=\IC. [/mm] Für [mm] z,w\in \IK^{n+1} [/mm] setzen wir [mm] :=\sum\limits_{k=1}^{n+1} z_k\overline{w}_k. [/mm] Wir betrachten

[mm] f:\IK P^n\to End(\IK^{n+1})\cong \IK^{(n+1)^2}, [/mm]

gegeben durch

[mm] (\ast) f([y]):v\mapsto\dfrac{}{}y [/mm]

für alle [mm] y\in \IK^{n+1}\setminus\{0\} [/mm] und [mm] v\in \IK^{n+1}.... [/mm]

Meine Frage ist nun die Folgende. [mm] \IK P^n [/mm] ist der projektive Raum, definiert vermöge [mm] \IK P^n:=(\IK^{n+1}\setminus\{0\})/\sim. [/mm] Die elemente sind also Äquivalenzklassen.

Bei [mm] (\ast) [/mm] wird jedoch einem [mm] v\in \IK^{n+1} [/mm] ein Wert zugeordnet und die Äquivalenzklasse [mm] [y]\in\IK P^n [/mm] scheint gegeben zu sein.

Oder wie ist diese Notation zu lesen?! Wäre super wenn mir jemand einen Tipp geben könnte, wie diese Schreibweise zu verstehen ist.

Grüße

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Notation einer Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Fr 04.11.2011
Autor: donquijote


> Sei [mm]\IK=\IR[/mm] oder [mm]\IK=\IC.[/mm] Für [mm]z,w\in \IK^{n+1}[/mm] setzen wir
> [mm]:=\sum\limits_{k=1}^{n+1} z_k\overline{w}_k.[/mm] Wir
> betrachten
>
> [mm]f:\IK P^n\to End(\IK^{n+1})\cong \IK^{(n+1)^2},[/mm]
>  
> gegeben durch
>  
> [mm](\ast) f([y]):v\mapsto\dfrac{}{}y[/mm]
>  
> für alle [mm]y\in \IK^{n+1}\setminus\{0\}[/mm] und [mm]v\in \IK^{n+1}....[/mm]
>  
> Meine Frage ist nun die Folgende. [mm]\IK P^n[/mm] ist der
> projektive Raum, definiert vermöge [mm]\IK P^n:=(\IK^{n+1}\setminus\{0\})/\sim.[/mm]
> Die elemente sind also Äquivalenzklassen.
>  
> Bei [mm](\ast)[/mm] wird jedoch einem [mm]v\in \IK^{n+1}[/mm] ein Wert
> zugeordnet und die Äquivalenzklasse [mm][y]\in\IK P^n[/mm] scheint
> gegeben zu sein.
>  
> Oder wie ist diese Notation zu lesen?! Wäre super wenn mir
> jemand einen Tipp geben könnte, wie diese Schreibweise zu
> verstehen ist.
>  
> Grüße
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.

Wegen dem <y,y> im Nenner hängt  f([y])(v) nur von der Äquivalenzklasse von y ab, d.h. jedem
[mm] v\in\IK^{n+1} [/mm] und jedem [mm] y\in\IK P^n [/mm] wird ein Wert  f([y])(v) in [mm] \IK^{n+1} [/mm] zugeordnet.
Für festgehaltenes y ist also eine Abbildung [mm] \IK^{n+1}\to\IK^{n+1}, v\mapsto [/mm]  f([y])(v) definiert, die nach Konstruktion linear ist.
In Abhängigkeit von y ergibt damit also eine Zuordnung, die der Äquivalenzklasse [y] einen Endormorphismus von [mm] \IK^{n+1} [/mm] zuordnet,
also eine Abbildung [mm] f:\IK P^n\to End(\IK^{n+1}) [/mm]

Bezug
                
Bezug
Notation einer Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 06.11.2011
Autor: huzein

Aufgabe
i. Zeigen Sie, dass die Abbildung $f$ glatt und injektiv ist.



> Wegen dem <y,y> im Nenner hängt  f([y])(v) nur von der Äquivalenzklasse von y ab

weshalb ist der Nenner entscheidend? Das ist mir nicht ganz klar!
Und wenn ich jetzt ein [mm] [y]\in\IK P^n [/mm] festhalte, sind dann die $v$ aus [mm] $[y]=\{w\in\IK^{n+1}\setminus\{0\}:y\sim w\}$, [/mm] oder beliebig aus ganz [mm] \IK^{n+1} [/mm] ?

Ansonsten habe ich die Notation soweit verstanden denk ich. Nun zur Aufgabe. Es soll die Glattheit und Injektivität von $f$ nachgewiesen werden.

Zur Injektivität: Nehme ich mir jetzt zwei Äquivalenzklassen [mm] $[y],[y']\in\IK P^n$ [/mm] und zeige, dass aus $f([y])=f([y'])$ folgt $[y]=[y']$, oder halte ich eine Äquivalenzklasse fest und wähle dazu zwei [mm] $v,v'\in\IK^{n+1}$ [/mm] und zeige die Implikation
[mm] $f([y])(v)=f([y])(v')\implies [/mm] v=v'$ ?

Bezug
                        
Bezug
Notation einer Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 So 06.11.2011
Autor: donquijote


> i. Zeigen Sie, dass die Abbildung [mm]f[/mm] glatt und injektiv
> ist.
>  
>
> > Wegen dem <y,y> im Nenner hängt  f([y])(v) nur von der
> Äquivalenzklasse von y ab
>  
> weshalb ist der Nenner entscheidend? Das ist mir nicht ganz
> klar!

Dadurch ändert sich das Ergebnis nicht, wenn y durch ein w aus der selben Äquivalenzklasse ersetzt wird.
Nur so ist eine Abbildung mit Definitionsbereich [mm] \IK P^n [/mm] wohldefiniert.

> Und wenn ich jetzt ein [mm][y]\in\IK P^n[/mm] festhalte, sind dann
> die [mm]v[/mm] aus [mm][y]=\{w\in\IK^{n+1}\setminus\{0\}:y\sim w\}[/mm], oder
> beliebig aus ganz [mm]\IK^{n+1}[/mm] ?
>  

v ist beliebig aus [mm] \IK^{n+1}, [/mm] da ja f([y]) eine Abbildung [mm] \IK^{n+1}\to\IK^{n+1} [/mm] ist

> Ansonsten habe ich die Notation soweit verstanden denk ich.
> Nun zur Aufgabe. Es soll die Glattheit und Injektivität
> von [mm]f[/mm] nachgewiesen werden.
>  
> Zur Injektivität: Nehme ich mir jetzt zwei
> Äquivalenzklassen [mm][y],[y']\in\\IK P^n[/mm] und zeige, dass aus
> [mm]f([y])=f([y'])[/mm] folgt [mm][y]=[y'][/mm], oder halte ich eine
> Äquivalenzklasse fest und wähle dazu zwei
> [mm]v,v'\in\IK^{n+1}[/mm] und zeige die Implikation
>  [mm]f([y])(v)=f([y])(v')\implies v=v'[/mm] ?

Ersteres, denn zu zeigen ist (zumindest verstehe ich das so), dass f als Abbildung von [mm] \IK P^n [/mm] nach [mm] End(\IK^{n+1}) [/mm] injektiv ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]