www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Notation..
Notation.. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notation..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Mi 19.03.2008
Autor: Meli90

Guten Morgen!
Ich bin gerade dabei mir einen Beweis durchzusehen und habe etwas robleme mit der Notation.. Da dachte ich vielleicht kann mir hier ja jemand auf die Sprünge helfen =)
Also zuerst eine Verständnisfrage:
commuting endomorphisms? Also Endomorphismen ist klar, nur commuting (pendelnd wird es wohl nicht sein)
dann [mm] \mathcal{P}(K,d,r) [/mm] ?
Ist das eine Potenzmenge?
Dazu weiss ich, dass es [mm] A_{1},...,A_{r} [/mm] gibt, eben diese "commuting endomorphisms" eines K-VR der V genannt wird. V hat Dimension n und d teilt n nicht.
Ja, da tue ich mich etwas schwer.. wäre froh, wenn sich jemand die Mühe machen würde und mir diese Schreibweisen zu erklären.. DANKE!!
Mel

        
Bezug
Notation..: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Mi 19.03.2008
Autor: statler

Hi Mel!

>  Ich bin gerade dabei mir einen Beweis durchzusehen und
> habe etwas Probleme mit der Notation.. Da dachte ich
> vielleicht kann mir hier ja jemand auf die Sprünge helfen
> =)
>  Also zuerst eine Verständnisfrage:
> commuting endomorphisms? Also Endomorphismen ist klar, nur
> commuting (pendelnd wird es wohl nicht sein)

2 Endomorphismen A und B sind commuting, wenn sie miteinander kommmutieren, also AB = BA ist.

>  dann [mm]\mathcal{P}(K,d,r)[/mm] ?
>  Ist das eine Potenzmenge?

Eher nicht. Kann es sein, daß das die Polynome in r Variablen vom Grad [mm] \le [/mm] d oder homogen vom Grad d sein sollen?

> Dazu weiss ich, dass es [mm]A_{1},...,A_{r}[/mm] gibt, eben diese
> "commuting endomorphisms" eines K-VR der V genannt wird. V
> hat Dimension n und d teilt n nicht.

Was wird denn genau untersucht oder bewiesen?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Notation..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 Mi 19.03.2008
Autor: Meli90

Vielen Dank für die schnelle Antwort!
Also es wird dann gefolgert, dass [mm] A_{1},..,A_{r} [/mm] einen gemeinsamen Eigenvektor haben.
(aus dem Beweis von Harm Derksen zum Fundamentalsatz der Algebra)


Bezug
                        
Bezug
Notation..: jetzt klarer
Status: (Antwort) fertig Status 
Datum: 12:01 Mi 19.03.2008
Autor: statler

Danke für den Hinweis, meine Vermutung oben ist damit falsch.

Ich habe diesen Beweis []hier im Netz gefunden (p. 106 bis 109). Was in deiner Frage [mm] \mathcad{P} [/mm] heißt, ist dort EV, also eine Aussage.

Ich kannte diesen Beweis bisher nicht und habe ihn auch noch nicht gelesen und verstanden.

Gruß
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]