www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Normen
Normen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:04 Do 25.04.2013
Autor: Thomas_Aut

Aufgabe
Hallo ,

Ich habe folgende Aufgabenstellung:

a ) Für p [mm] \ge [/mm] 1 sei [mm] ||.||_{p}: \IR^{n} \to \IR [/mm] definiert durch:

[mm] ||(x_{j})_{j=1}^{n}||_{p} [/mm] := [mm] \wurzel[p]{\summe_{j=1}^{n}|x_{j}|^{p}} [/mm]

Man zeige dass [mm] ||.||_{p} [/mm] eine Norm ist.

b) Man Zeige , dass alle Normen [mm] ||.||_{p} [/mm] , p [mm] \in [/mm] [1, [mm] \infty) [/mm] auf [mm] \IR^{n} [/mm] äquivalent sind. Man zeige insbesondere dass [mm] (1\lep
[mm] ||x||_{\infty} \le ||x||_{q} \le ||x||_{p} \le n||x||_{\infty}. [/mm]

Also gut:
ad a)

Behauptung 1: [mm] ||(x_{j})_{j=1}^{n}||_{p} [/mm] := [mm] \wurzel[p]{\summe_{j=1}^{n}|x_{j}|^{p}} [/mm] ist eine Norm.
Beweis:

Bedingungen für eine Norm: X sei Vektorraum über [mm] \IR (\IC) [/mm]

1)[mm] ||x+y|| \le ||x|| + ||y|| x,y \in X [/mm]
2) [mm] ||ax|| = |a|.||x|| x \in X a \in \IR (\IC)[/mm]
3)[mm] ||x|| > 0 falls x \neq 0[/mm]

Ich prüfe die Bedingungen :

ad 3)  [mm] \wurzel[p]{\summe_{j=1}^{n}|x_{j}|^{p}} [/mm] > 0 für alle x [mm] \neq [/mm] 0 ist klar aufgrund des Betrags.
ad 2) zz : [mm] ||ax|| = |a|.||x|| x \in X a \in \IR (\IC)[/mm]

[mm] ||ax||_{p} = \wurzel[p]{\summe_{j=1}^{n}|ax_{j}|^{p}} = \wurzel[p]{\summe_{j=1}^{n}|a|^{p}|x_{j}|^{p}} = \wurzel[p]{|a|^{p}\summe_{j=1}^{n}|x_{j}|^{p}} = |a|.||x|| [/mm]

ad 1: zz. [mm] ||x+y|| \le ||x|| + ||y|| x,y \in X [/mm]

[mm] \summe_{i=1}|x_{j}+y_{y}|^{p} \le \summe_{i=1}|x_{j}||x_{j}+y_{y}|^{p-1} [/mm] + [mm] \summe_{i=1}|y_{j}||x_{j}+y_{y}|^{p-1} [/mm] lt. Hinweis.
Ich wende nun die Höldersche Ungl. an:

[mm] \le (\summe_{i=1}^{n}|x_{j}|^{p})*\summe_{i=1}^{n}(|x_{j}+y_{j}|^{(p-1)*q})^{\frac{1}{q}} [/mm] + [mm] (\summe_{i=1}^{n}|y_{j}|^{p})*\summe_{i=1}^{n}(|x_{j}+y_{j}|^{(p-1)*q})^{\frac{1}{q}}, [/mm] setze q = [mm] \frac{p}{p-1} [/mm] und erhalte nach umformen die gewünschte Aussage.

ad b)

Behauptung: Die Normen sind äquivalent:

Die Normen [mm] ||.||_{p}[/mm] und [mm] ||.||_{q}[/mm] heißen äquivalent [mm] \gdw[/mm]  [mm]a*||.||_{p} \le ||.||_{q} \le b*||.||_{p}[/mm] wobei a,b > 0.

Ich mache dies hier nur für : [mm]||.||_{\infty}[/mm] äquivalent zu [mm]||.||_{p}[/mm]

[mm][mm] ||(x_{j})_{j=1}^{n}||_{\infty}:=Max_{1\le j \le n} {|x_{j}|} [/mm]

[mm] Max_{1\le j \le n} {|x_{j}|} \le (\summe_{j=1}^{n}|x_{j}|^{p})^{\frac{1}{p}} \le (\summe_{j=1}^{n}Max(|x_{j}|^{p}))^{\frac{1}{p}} [/mm] = [mm]n*Max (|x_{j}|^{p})^{\frac{1}{p}} = n*Max|x_{j}| = n*||.||_{\infty} [/mm]

[mm] \Rightarrow[/mm]  [mm]a*||.||_{\infty}[/mm] [mm] \le[/mm]   [mm]||.||_{p}[/mm] [mm] \le[/mm] [mm] n*||.||_{\infty}[/mm]  , wobei a = 1.

Vorgehen um die Äquivalenz der anderen Normen zu zeigen wäre ähnlich.

Passt das im Großen und Ganzen?

Lg Thomas


        
Bezug
Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Do 25.04.2013
Autor: mathmetzsch

Hallo,

also deine Ausführungen zum Teil a) der Aufgabe sind m.E. korrekt.

Grüße, Daniel

Bezug
        
Bezug
Normen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 27.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]