www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Normalverteilung
Normalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Verpackungsanlage Gemüse
Status: (Frage) beantwortet Status 
Datum: 15:05 Di 21.05.2013
Autor: WSparrow

Aufgabe
Eine Verpackungsanlage für Gemüse soll Schalen mit 200g befüllen. Man hat festgestellt, dass die Anlage eine normalverteilte Produktion erstellt mit Mittelwert 200g und Standardabweichung 2g.

a) Wie hoch ist der Ausschuss, wenn eine Abweichung von 3g nicht überschritten werden darf?
b) Welche Abweichung ist noch zulässig, wenn der Ausschuss höchstens 2% betragen soll?

Hallo ;)

bei oben genannter Aufgabe komme ich nicht so recht weiter. Zu a) habe ich mir überlegt, dass eine Abweichung von 3g heißt, dass in meiner Schale 197-203g sein dürfen, d.h. P[197<X<203]. Leider weiß ich ab diesem Zeitpunkt nicht mehr wie das auszurechnen ist anhand der Angaben. Zu b) weiß ich, dass ich die 98%ige Verteilung um diese 200g berechnen muss mithilfe von sigma. Leider weiß ich nicht, wie ich das mit der Formel hinkriege sodass auch die passenden Grammzahlen herauskommen. Ich hoffe, ihr könnt mir helfen.

Danke schonmal ;)


        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Di 21.05.2013
Autor: MathePower

Hallo WSparrow,

> Eine Verpackungsanlage für Gemüse soll Schalen mit 200g
> befüllen. Man hat festgestellt, dass die Anlage eine
> normalverteilte Produktion erstellt mit Mittelwert 200g und
> Standardabweichung 2g.
>
> a) Wie hoch ist der Ausschuss, wenn eine Abweichung von 3g
> nicht überschritten werden darf?
>  b) Welche Abweichung ist noch zulässig, wenn der
> Ausschuss höchstens 2% betragen soll?
>  Hallo ;)
>  
> bei oben genannter Aufgabe komme ich nicht so recht weiter.
> Zu a) habe ich mir überlegt, dass eine Abweichung von 3g
> heißt, dass in meiner Schale 197-203g sein dürfen, d.h.
> P[197<X<203]. Leider weiß ich ab diesem Zeitpunkt nicht
> mehr wie das auszurechnen ist anhand der Angaben. Zu b)


Transformiere P[197<X<203] auf die Standardnormalverteilung.
Dann kannst Du die []Tabelle der Standardnormalverteilung verwenden.


> weiß ich, dass ich die 98%ige Verteilung um diese 200g
> berechnen muss mithilfe von sigma. Leider weiß ich nicht,
> wie ich das mit der Formel hinkriege sodass auch die
> passenden Grammzahlen herauskommen. Ich hoffe, ihr könnt
> mir helfen.
>  


Hier hilft auch obiger Ansatz.

Allerdings sind hier die Grenzen gesucht, für die die Wahrscheinlichkeit 98% beträgt.


> Danke schonmal ;)


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]