www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: kurze Frage
Status: (Frage) beantwortet Status 
Datum: 14:22 So 12.02.2012
Autor: dennis2

Aufgabe
Wenn [mm] $X\sim\mathcal{N}(4,9)$, [/mm] wie ist dann

$Y=3X$ verteilt?

Eigentlich eine total einfache Frage, aber ich stehe gerade auf dem Schlauch.


Meine Idee:

[mm] $Y\sim\mathcal{N}(4,)$ [/mm]

Also am Erwartungswert ändert sich nichts..

Aber an der Varianz, aber:  Wie?

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 So 12.02.2012
Autor: Gonozal_IX

Hallo Dennis,

ich sag nur eins: Rechenregeln nachschlagen!
Rechne es doch ganz einfach aus!
Dafür müsstest du natürlich obiges erstmal nachholen.
Also los, und dann:

$E[Y] = [mm] \ldots$ [/mm]

[mm] $\text{Var}[Y] [/mm] = [mm] \ldots$ [/mm]

Dann hast du erstmal Erwartungswert und Varianz.
Dann müsst du noch Begründen, dass Y selbst auch normalverteilt ist.

MFG,
Gono.

Bezug
                
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 So 12.02.2012
Autor: dennis2

Und wo finde ich diese "Rechenregeln"? :-)


Edit: Achso, jetzt kapiere ich, was Du meinst!

E(3X)=3E(X)....

Var(3X)=9Var(X)

Bezug
                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 So 12.02.2012
Autor: Gonozal_IX

Hiho,

> Und wo finde ich diese "Rechenregeln"? :-)

Die Frage ist jetzt nicht dein ernst, oder?
Ein bisschen Eigeninitiative ist doch wohl möglich!
Und gemacht habt ihr das sicherlich auch in der Vorlesung.

> Edit: Achso, jetzt kapiere ich, was Du meinst!
>  
> E(3X)=3E(X)....
>  
> Var(3X)=9Var(X)

Aha, geht doch.
Mensch mensch mensch....

MFG,
Gono.

Bezug
                                
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 So 12.02.2012
Autor: dennis2

Sorry, hatte nicht kapiert, was Du mit Rechenregeln meinst.


Aber eine Frage leider doch noch:

Wie zeige ich jetzt, daß das auch normalverteilt ist?




Bezug
                                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 So 12.02.2012
Autor: Gonozal_IX

Hiho,

> Aber eine Frage leider doch noch:
>  
> Wie zeige ich jetzt, daß das auch normalverteilt ist?

entweder ihr hattet den entsprechenden Satz, oder das hängt davon ab, wie ihr Normalverteilung definiert habt.
Zeige z.B. das Y als Verteilungsdichte die einer Normalverteilung hat.

MFG,
Gono.

Bezug
                                                
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 So 12.02.2012
Autor: dennis2

Der Satz lautet dann so?

Ist X normalverteilt, so ist es auch cX für [mm] $c\in\mathbb [/mm] R$?

So einen Satz hatten wir bestimmt...



Bezug
                                                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 So 12.02.2012
Autor: Gonozal_IX

Hiho,

> So einen Satz hatten wir bestimmt...

nicht spekulieren.
Nachschlagen, beweisen, oder widerlegen!

MFG,
Gono.

Bezug
                                                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 So 12.02.2012
Autor: dennis2

Habs gerade unter dem Stichwort "lineare Transformation von normalverteilten Zufallsvariablen" ausfindig gemacht.


Danke an Dich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]