www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Normalverteilung?
Normalverteilung? < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Fr 03.02.2012
Autor: Kuriger

Hallo

Wie gross ist die Wahrscheinlichkeit, dass sich unter 1000 Kindern höchstens 40% Mädchen befinden. Unter der Annahme dass es gleich viele Knaben wie Mädchen gibt.

Oder wenn ich dies mit der http://de.wikipedia.org/wiki/Binomialverteilung lösen möchte, müsste ich jeden Fall durchgehen; kein Mädchen, ein Mädchen bis 400 Mädchen. Da werde ich ja nicht fertig.

Nun frage ich mich, ob ich dies irgendwie mit der Normalverteilung, der Standardabweichung etc. lösen kann.

[mm] \mu [/mm] = 500

Nun bräuchte ich die Varianz oder Standardabweichung. Daraus kann ich dann den Umgebungsradius (oder wie das heisst) bestimmen und mit der Tabelle die Wahrscheinlichkeit rauslesen.

Standardabweichung = [mm] \wurzel{n*p*(1-p)} [/mm]
n = 1000
p = 0.4

Standardabweichung = [mm] \wurzel{1000*0.4*(1-0.4)} [/mm] 15.49
Z = [mm] \bruch{100}{15.49} [/mm] = 6.46

Das ist auf meiner Tabelle bei weitem nicht mehr aufgeführt. Mache ich was falsch?

Danke





        
Bezug
Normalverteilung?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Fr 03.02.2012
Autor: abakus


> Hallo
>  
> Wie gross ist die Wahrscheinlichkeit, dass sich unter 1000
> Kindern höchstens 40% Mädchen befinden. Unter der Annahme
> dass es gleich viele Knaben wie Mädchen gibt.
>  
> Oder wenn ich dies mit der
> http://de.wikipedia.org/wiki/Binomialverteilung lösen
> möchte, müsste ich jeden Fall durchgehen; kein Mädchen,
> ein Mädchen bis 400 Mädchen. Da werde ich ja nicht
> fertig.
>  
> Nun frage ich mich, ob ich dies irgendwie mit der
> Normalverteilung, der Standardabweichung etc. lösen kann.
>  
> [mm]\mu[/mm] = 500
>  
> Nun bräuchte ich die Varianz oder Standardabweichung.
> Daraus kann ich dann den Umgebungsradius (oder wie das
> heisst) bestimmen und mit der Tabelle die
> Wahrscheinlichkeit rauslesen.
>  
> Standardabweichung = [mm]\wurzel{n*p*(1-p)}[/mm]
>  n = 1000
>  p = 0.4
>  
> Standardabweichung = [mm]\wurzel{1000*0.4*(1-0.4)}[/mm] 15.49
>  Z = [mm]\bruch{100}{15.49}[/mm] = 6.46
>  
> Das ist auf meiner Tabelle bei weitem nicht mehr
> aufgeführt. Mache ich was falsch?

Nein. Der Wert für -6.46 ist nahezu 0; der Wert von +6.46 entsprechend nahezu 1. 400 oder weniger Mädchen ist quasi ein unmögliches Ereignis, so wie mehr als 400 Mädchen nahezu sicher sind bei zufälliger Auswahl der 1000 Personen.

Mit einer Binomialverteilung erhältst du übrigens für GENAU 400 Mädchen den Wert  [mm] 4,6*10^{-11}. [/mm]
Da bei p=0,5 der größte Wert erst in der Mitte (also bei 500) angenommen wird, sind die Wahrscheinlichkeiten für 399, 398, 397 ... Mädchen sogar noch kleiner; sodass auch die Summe der ersten 400 Werte verschwindend gering bleibt.

Gruß Abakus

>  
> Danke
>  
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]