www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage
Status: (Frage) beantwortet Status 
Datum: 13:42 Do 07.04.2005
Autor: crowmat

Ich hab folgende Aufgabe gegeben: Das Füllgewicht von Bierflaschen variiert produktionsbedingt zufällig noormalverteilt um den Erwartungswert  [mm] \mu [/mm] = 0.503 mit einer Varianz von sigma²=(0.002)².
Wie groß müßte bei gleichem Wert für Sigma, der parameter  [mm] \mu [/mm] mindestens sein, damit eine füllmenge von wenigstens 0.5 mit der wahrscheinlichkeit 0.98 erreicht wird!

Dazu hab ich folgendes gerechnet, was mich aber nicht weiterbringt!
P(x>=0.5)=0.98
Ich hab versucht die transformation anzuwenden, bin aber gescheitert!Hat einer von euch eine Idee?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Do 07.04.2005
Autor: Brigitte

Hallo crowmat!

> Ich hab folgende Aufgabe gegeben: Das Füllgewicht von
> Bierflaschen variiert produktionsbedingt zufällig
> noormalverteilt um den Erwartungswert  [mm]\mu[/mm] = 0.503 mit
> einer Varianz von sigma²=(0.002)².
> Wie groß müßte bei gleichem Wert für Sigma, der parameter  
> [mm]\mu[/mm] mindestens sein, damit eine füllmenge von wenigstens
> 0.5 mit der wahrscheinlichkeit 0.98 erreicht wird!
>  
> Dazu hab ich folgendes gerechnet, was mich aber nicht
> weiterbringt!
>  P(x>=0.5)=0.98

x ist also Deine Zufallsvariable, die das Füllgewicht beschreibt. Von ihr weiß man, dass sie normalverteilt ist mit der Varianz [mm] $0.002^2$ [/mm] und unbekanntem Erwartungswert [mm] $\mu$. [/mm] Dein Ansatz ist völlig korrekt. Wenn man es ganz genau nimmt, sollte in der Aufgabenstellung stehen, dass die gesuchte Wkt. mindestens 0.98 betragen soll. Damit hat man dann

[mm] $P(x\ge 0.5)\ge0.98$ [/mm]

Durch Standardisierung erhält man

[mm] $1-\Phi\left(\frac{0.5-\mu}{0.002}\right) \ge [/mm] 0.98$

oder

[mm] $\Phi\left(\frac{0.5-\mu}{0.002}\right)\le [/mm] 0.02$

Weißt Du nun wie es weitergeht (Stichwort Quantil) oder ist das gerade der Haken?

[mm] $\Phi(y)\le [/mm] p$ ist doch äquivalent zu [mm] $y\le u_p$, [/mm] wobei [mm] $u_p$ [/mm] das p-Quantil der Standardnormalveretilung bezeichnet. Kommst Du damit weiter?

Viele Grüße
Brigitte



Bezug
                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:08 Do 07.04.2005
Autor: Julius

Liebe Brigitte!

Sorry, dass ich auch noch geantwortet hatte. Ich hatte schon vor einer Stunde begonnen die Antwort zu schreiben, musste dann plötzlich weg und konnte sie dann erst wegschicken. In der Zwischenzeit hatte mir matux offenbar die Bearbeitungssperre "geklaut". ;-)

Liebe Grüße
Julius :-)

Bezug
        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Do 07.04.2005
Autor: Julius

Hallo!

Dein Ansatz ist völlig richtig!

Jetzt standardisieren wir die Zufallsvariable und erhalten:

[mm] $P\left( \frac{X-\mu}{0.02} \ge \frac{0.5-\mu}{0.002} \right) [/mm] = 0.98$, also:

$1 - [mm] \Phi \left( \frac{0.5-\mu}{0.002} \right) [/mm] = 0.98$

und

[mm] $\Phi \left( \frac{0.5-\mu}{0.002} \right) [/mm] =0.02$.

Nun liefert die Symmetrie der Standardnormalverteilung:

[mm] $\Phi \left( \frac{\mu - 0.5}{0.002} \right) [/mm] =0.98$.

So, und jetzt schaust du in die Tabelle der Verteilungsfunktion der Standardnormalverteilung und suchst den Wert mit

[mm] $\Phi(z) [/mm] = 0.98$.

Dann setzt du

[mm] $\frac{\mu - 0.5}{0.002} [/mm] = z$

und löst nach [mm] $\mu$ [/mm] auf.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]