www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Normalverteilung
Normalverteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 30.06.2009
Autor: Tobi1988

Aufgabe
Seien x,y [mm] \sim [/mm] N(0,1) unabhängig. Zeigen Sie: z=x+y [mm] \sim [/mm] N(0,2)

Also gut, im Grunde dürfte die Aufgabe nicht sehr schwer sein. Aber trotzdem habe ich etwas Probleme den Zusammenhang (Stichwort: Faltung) zu verstehen.

Meine erste Herangehensweise wäre gewesen:
E(z)=E(x+y)=E(x)+E(y)=0+0=0
V(z)=V(x+y)=V(x)+V(y)=1+1=2 (Cov(x,y)=0 weil unabhängig)

Aber damit habe ich ja quasi noch nicht gezeigt, dass z normalverteilt ist, sondern nur Parameter angegeben.

Deshalb jetzt mit der "Faltungsformel" (ehrlich gesagt weiß ich nicht, was hier genau passiert)

[mm] f_{x+y}(z)=f_{z}(z)=\integral_{-\infty}^{\infty} f_{y}(y)*f_{x}(x)dy [/mm]
[mm] =\integral_{-\infty}^{\infty} f_{y}(y)*f_{x}(z-y)dy [/mm]

[mm] =\integral_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}*\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(z-y)^2}dy [/mm]

[mm] =\frac{1}{2\pi} \integral_{-\infty}^{\infty} e^{-\frac{1}{2}y^2-\frac{1}{2}(z-y)^2}dy [/mm]

[mm] =\frac{1}{2\pi} \integral_{-\infty}^{\infty} e^{-\frac{1}{2}y^2-\frac{1}{2}(z^2-2zy+y^2)}dy [/mm]

[mm] =\frac{1}{2\pi} \integral_{-\infty}^{\infty} e^{-y^2-\frac{1}{2}z^2+zy}dy [/mm]

[mm] =\frac{1}{2\pi} e^{\frac{1}{2}z^2} \integral_{-\infty}^{\infty} e^{-y^2+zy-z^2}dy [/mm]

[mm] =\frac{1}{2\pi} e^{\frac{1}{2}z^2} \integral_{-\infty}^{\infty} e^{-(y^2-zy+z^2)}dy [/mm]

[mm] =\frac{1}{2\pi} e^{\frac{1}{2}z^2} \integral_{-\infty}^{\infty} e^{-(y-z)^2}dy [/mm]


Hmm, wo steckt nun der Fehler? Bzw. richtig gerechnet müsste es ja sein, habe ja jeden einzelnen Schritt extra hingeschrieben, wahrscheinlich ist der Weg einfach falsch.

Kann ich irgendwas mit dem Term zy machen? Zum Beispiel:

[mm] zy=(x+y)y=xy+y^2=y^2 [/mm] (weil x,y unabhängig) ?

Für Hilfe wäre ich dankbar!

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Di 30.06.2009
Autor: generation...x

Auf den ersten Blick würde ich mal sagen, dass deine quadratische Ergänzung von der vorletzten auf die letzte Zeile keine ist (den sonst müsste da wohl 2yz stehen, oder?). Ob das jetzt weiterführt ist eine andere Frage...

Bezug
        
Bezug
Normalverteilung: Tipp
Status: (Antwort) fertig Status 
Datum: 16:57 Di 30.06.2009
Autor: generation...x

Noch ein Tipp: Normalerweise verwendet man für diesen Beweis die charakteristische Funktion (falls ihr die gemacht habt). Der Beweis findet sich vermutlich in jedem Buch über Stochastik.

Bezug
                
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Do 02.07.2009
Autor: Tobi1988

Vielen Dank für die Reaktionen!

Habe nun also stehen:

$... [mm] =\frac{1}{2\pi} \integral_{-\infty}^{\infty} e^{-y^2-\frac{1}{2}z^2+zy}dy [/mm] $

$ [mm] =\frac{1}{2\pi} [/mm] * [mm] e^{-\frac{1}{4}z^2}\integral_{-\infty}^{\infty} e^{-(y-\frac{1}{2}z^2)^2}dy [/mm] $

Wenn jetzt das Integral = $ [mm] \sqrt{\frac{2*\pi}{2}} [/mm]  $ wäre. Stünde dann schließlich da:

$ [mm] \frac{1}{\sqrt{4 \pi}} [/mm] * [mm] e^{-\frac{1}{4}z^2} [/mm] $

Das wäre die Normalverteilung mit den gewünschten Parametern [mm] \mu [/mm] = 0 und [mm] \sigma^2=4, [/mm] also [mm] \sigma=2. [/mm]

Jetzt noch die Frage: WARUM ist dieses komische Integral = $ [mm] \sqrt{\frac{2*\pi}{2}} [/mm]  $???

Danke schon mal für eine Antwort, vielleicht gerade die nötigen Umformungen,  bin echt "leicht" verwirrt von der Aufgabe...

Bezug
                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Do 02.07.2009
Autor: luis52


> Wenn jetzt das Integral = [mm]\sqrt{\frac{2*\pi}{2}} [/mm] wäre.

Also [mm] $\sqrt{\pi}$, [/mm] oder?

> Stünde dann schließlich da:
>  
> [mm]\frac{1}{\sqrt{4 \pi}} * e^{-\frac{1}{4}z^2}[/mm]
>  

>

>  
> Jetzt noch die Frage: WARUM ist dieses komische Integral =
> [mm]\sqrt{\frac{2*\pi}{2}} [/mm]???
>  

"Komisches" Integral? Ich sehe nirgends ein "komisches" Integral.
Der Begriff ist mir nicht gelaeufig. [verwirrt]

Aber setze mal in

[mm] $\integral_{-\infty}^{\infty} e^{-(y-\frac{1}{2}z^2)^2}dy [/mm] $

[mm] $u/\sqrt{2}=y-z^2/2$ [/mm] ...

vg Luis


Bezug
        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Di 30.06.2009
Autor: Blech

Hi,

charakteristische Funktion brauchst Du nicht, Du bist fast am Ziel.

Das Problem ist wirklich die quadratische Ergänzung

[mm] $-y^2-\frac{1}{2}z^2+zy [/mm] = [mm] -(y-\frac12 z)^2 -\frac{1}{4} z^2$ [/mm]

Das Integral löst Du dann, indem Du entweder im Bronstein nachschlägst, oder es auf die Form

[mm] $\int_{-\infty}^\infty e^{-\frac{(y-\kappa)^2}{2\rho}}\ [/mm] dy$

bringst (für geeignetes [mm] $\rho$. [/mm] Was genau [mm] $\kappa$ [/mm] ist, ist wurscht. Weil wir von [mm] $-\infty$ [/mm] bis [mm] $\infty$ [/mm] integrieren, spielen Verschiebungen keine Rolle), denn das ist dann wieder (bis auf Vorfaktor) die Dichte der Normalverteilung.



> Aber damit habe ich ja quasi noch nicht gezeigt, dass z
> normalverteilt ist, sondern nur Parameter angegeben.

Richtig.
  

> Deshalb jetzt mit der "Faltungsformel" (ehrlich gesagt
> weiß ich nicht, was hier genau passiert)

Für diskrete X und Y gilt:

$P(X+Y=z) = P(X=z-Y) = [mm] \sum_y [/mm] P( Y=z-Y\ |\ Y=y)P(Y=y) [mm] \underset{\text{unabh.}}{=} \sum_y [/mm] P(X=z-y)P(Y=y)$
  
bei stetigen Zufallsvariablen summierst Du nicht mehr über alle möglichen Werte y, die Y annehmen kann, sondern über alle infinitesimalen Intervalle dy und anstatt der Wkeit, daß X bzw. Y die Werte annehmen, nimmst Du die Dichte in dem jeweiligen Intervall.



> [mm]f_{x+y}(z)=f_{z}(z)=\integral_{-\infty}^{\infty} f_{y}(y)*f_{x}(x)dy[/mm]

Das ist so falsch, außer Du schreibst irgendwo hin, daß x:=z-y, denn wenn Du x einfach als beliebige Variable läßt, gilt:

[mm] $\integral_{-\infty}^{\infty} f_{y}(y)*f_{x}(x)dy [/mm]  = [mm] f_x(x)\integral_{-\infty}^{\infty} f_{y}(y)dy =f_x(x)$ [/mm]

=)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]