www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik-Sonstiges" - Normalverteilung
Normalverteilung < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 12:25 Do 15.03.2007
Autor: miniscout

Hallöle!

Ich habe eine Verständnisfrage bzgl. der Normalverteilung, da mir noch nicht so ganz klar ist, wann man welche der beiden Formeln für [mm] \phi [/mm] benutzt.

(1) [mm] $\phi [/mm] = [mm] \bruch{1}{\sigma * \wurzel{2* \pi}} [/mm] * [mm] e^{-\bruch{1}{2}(\bruch{k-\mu}{\sigma})^2}$ [/mm]

(2) [mm] $\phi [/mm] = [mm] \bruch{1}{\wurzel{2* \pi}} [/mm] * [mm] e^{-\bruch{1}{2}(\bruch{k-\mu}{\sigma})^2}$ [/mm]


Könnt ihr mir das erklären? Oder kennt ihr eine Seite, auf der das, möglichst ausführlich, erklärt wird?

DANKE!!!

Gruß miniscout [read]


        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Do 15.03.2007
Autor: luis52


> Hallöle!
>  
> Ich habe eine Verständnisfrage bzgl. der Normalverteilung,
> da mir noch nicht so ganz klar ist, wann man welche der
> beiden Formeln für [mm]\phi[/mm] benutzt.
>
> (1) [mm]\phi = \bruch{1}{\sigma * \wurzel{2* \pi}} * e^{-\bruch{1}{2}(\bruch{k-\mu}{\sigma})^2}[/mm]
>  
> (2) [mm]\phi = \bruch{1}{\wurzel{2* \pi}} * e^{-\bruch{1}{2}(\bruch{k-\mu}{\sigma})^2}[/mm]
>  
>
> Könnt ihr mir das erklären? Oder kennt ihr eine Seite, auf
> der das, möglichst ausführlich, erklärt wird?
>  

>

Moin miniscout,

die zweite wirst du nie im Zusammenhang mit der Normalverteilung, finden, da es sich nicht um eine Dichte handelt, es sei denn, es ist [mm] $\sigma=1$. [/mm] Die allgemeine Form der Dichte einer Normalverteilung schreibt man beispielsweise wie in (1) als [mm]f(x) = \bruch{1}{\sigma * \wurzel{2* \pi}} * e^{-\bruch{1}{2}(\bruch{x-\mu}{\sigma})^2}[/mm]. Der Buchstabe [mm] $\phi$ [/mm] oder [mm] $\varphi$ [/mm] wird vielfach fuer die Dichte der *Standardnormalverteilung* verwandt, also   [mm]\varphi(z) = \bruch{1}{\wurzel{2* \pi}} * e^{-\bruch{z^2}{2}}[/mm]. Man kann die Standardnormalverteilungen  als "Mutter aller Normalverteilung" bezeichnen, weil sich Vieles auf sie zurueckfuehren laesst. Z.B. ist [mm] $f(x)=\varphi((x-\mu)\sigma)/\sigma$. [/mm]

Hast du hier schon einmal geschaut?

[]http://de.wikipedia.org/wiki/Normalverteilung

hth

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]