www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Analysis" - Normalverteile Zufallsgröße
Normalverteile Zufallsgröße < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteile Zufallsgröße: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Mo 19.06.2006
Autor: chil14r

Aufgabe
Zufallsgröße [mm] \xi \sim N_{-1,1} [/mm] , dh. $ [mm] \mu [/mm] = -1 $ und $ [mm] \phi^{2} [/mm] = 1 $
Für welchen Parameter "a" gilt:
$ P( [mm] \xi \le [/mm] a)  = [mm] \bruch{3}{4} [/mm] $

Meine Lösung bis jetzt:

$ [mm] \phi_{-1,1} [/mm] (a) = [mm] \phi_{0,1} (\bruch{a- \mu}{\phi}) [/mm] = [mm] \phi_{0,1} (\bruch{a- (-1)}{1}) [/mm] = [mm] \phi_{0,1} [/mm] (a+1) = [mm] \bruch{3}{4} [/mm] $
Tabelle für Normalverteilung:
$ 0,7517 = [mm] P(\xi [/mm] < (a+1)) [mm] \Rightarrow [/mm] a +1 = 0,68 [mm] \Rightarrow [/mm] a = -0,32 $

Ist das wirklich eine akzeptable Lösung?

        
Bezug
Normalverteile Zufallsgröße: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Mo 19.06.2006
Autor: Walde

hi chil14r,

meiner Meinung nach ja.

Das 3. Quartil der Std.Normalver. liegt etwa bei 0,68, also ist das 3. Quartil deiner Verteilung (mit [mm] \mu=-1) [/mm] um 1 nach links verschoben.

L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]