www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Normalteiler, Nebenklassen
Normalteiler, Nebenklassen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler, Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Fr 26.10.2012
Autor: Lu-

Aufgabe
Sei G eine Gruppe und N ein Normalteiler von G . Bezeichnet G/N die Menge der Nebenklassen von N in G mit der Veknüpfung (aN)(bN)=(ab)N

Nun habe ich eine Bemerkung:
Ist durch (aN)(bN) =abN auf der Menge der Nebenklassen von N in G eine Opeartion gegeben, so muss N Normalteiler von G gelten.

Jap, die Bemerkung habe ich auch nachgeprüft. Trotzdem verstehe ich den SInn hinter der Bemerkung nicht. Was soll die Bermekung einen verdeutlichen?
Tut das was zur sache, dass (aN)(bN) =abN  statt (aN)(bN)=(ab)N steht oder habe ich die Klammern da nur bei dem tafelabschreiben vergessen?
Liebe Grüße

        
Bezug
Normalteiler, Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Fr 26.10.2012
Autor: tobit09


> Nun habe ich eine Bemerkung:
>  Ist durch (aN)(bN) =abN auf der Menge der Nebenklassen von
> N in G eine Opeartion gegeben, so muss N Normalteiler von G
> gelten.
>  Jap, die Bemerkung habe ich auch nachgeprüft. Trotzdem
> verstehe ich den SInn hinter der Bemerkung nicht. Was soll
> die Bermekung einen verdeutlichen?

Man könnte es ja blöd finden, nur für Normalteiler eine Operation auf der Menge der Nebenklassen zu haben. Die Bemerkung sagt aber, dass es in analoger Weise für Untergruppen, die keine Normalteiler sind, nicht funktioniert. Man muss sich also mit der Einschränkung auf Normalteiler abfinden.

>  Tut das was zur sache, dass (aN)(bN) =abN  statt
> (aN)(bN)=(ab)N steht oder habe ich die Klammern da nur bei
> dem tafelabschreiben vergessen?

Man kann aus der Assoziativität der Gruppenverknüpfung ohnehin $(ab)N=a(bN)$ folgern, so dass die Klammerung egal ist und daher weggelassen werden kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]