Normalteiler,Erzeugnis < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:40 Di 03.02.2015 | Autor: | sissile |
Aufgabe | Um zuzeigen, dass es sich bei einer Untergruppe N von einer Gruppe G um einen Normalteiler handelt wird z.B. gezeigt: [mm] aNa^{-1} \subseteq [/mm] N für alle a [mm] \in [/mm] G.
Reicht es diese Eigenschaft nur für die Erzeuger von N zu zeigen??
Also wenn:
N=<M> reicht es dann [mm] ZZ.:aMa^{-1} \subseteq [/mm] N [mm] \forall [/mm] a [mm] \in [/mm] G um bewiesen zu haben, dass N ein Normalteiler ist? |
Hallo,
Die Frage tauchte beim Lernen beim folgenden Bsp. auf:
[mm] D_n=<\alpha, \beta> [/mm] Diedergruppe
Ist [mm] N:=<\beta> [/mm] mit [mm] \beta=(12..n)\in D_n [/mm] ein Normalteiler der Diedergruppe?
Ich weiß, dass es einfacher ist, dass zusehen mit [mm] [D_n:<\beta>]=2 [/mm] aber ich möchte das zum lernen direkter machen.
Reicht hier also ZZ.: [mm] \alpha^i \beta^j \beta (\alpha^i \beta^j)^{-1} \in [/mm] N
[mm] \alpha^i \beta^j \beta (\alpha^i \beta^j)^{-1}=\alpha^i \beta^j \beta \beta^{-j} \alpha^{-i}=\alpha^i \beta \alpha^{-i}= \beta^{-1} \alpha^i \alpha^{-i}=\beta^{-1} \in [/mm] N
|
|
|
|
Gute Frage!
Ich vermute, dass die Aussage nicht stimmt, ein Gegenbeispiel versuche ich noch zu konstruieren. Im Moment habe ich versucht, in freien Gruppen die nötigen Relationen zu erzwingen, vielleicht sollte ich mir aber auch mal ein paar konkrete Beispiele betrachten.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:20 Di 03.02.2015 | Autor: | hippias |
Ja, es genuegt die Eigenschaft fuer die Erzeuger nachzuweisen. Und dies ist fuer Deine konkrete Aufgabe interessant: Wenn $M$ eine Erzeugendenmenge von $N$ ist und $X$ eine Erzeugendenmenge von $G$, dann reicht auch [mm] $m^{x}\in [/mm] N$ fuer alle [mm] $m\in [/mm] M$ und alle [mm] $x\in [/mm] X$ zu wissen, damit $<M>$ Normalteiler von $G$ ist.
Fuer Dich heisst das, es genuegt [mm] $\beta^{\alpha}\in [/mm] N$ zu nachzuweisen, was trivial ist.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 07:26 Do 05.02.2015 | Autor: | sissile |
> Ja, es genuegt die Eigenschaft fuer die Erzeuger
> nachzuweisen. Und dies ist fuer Deine konkrete Aufgabe
> interessant: Wenn [mm]M[/mm] eine Erzeugendenmenge von [mm]N[/mm] ist und [mm]X[/mm]
> eine Erzeugendenmenge von [mm]G[/mm], dann reicht auch [mm]m^{x}\in N[/mm]
> fuer alle [mm]m\in M[/mm] und alle [mm]x\in X[/mm] zu wissen, damit [mm][/mm]
> Normalteiler von [mm]G[/mm] ist.
>
> Fuer Dich heisst das, es genuegt [mm]\beta^{\alpha}\in N[/mm] zu
> nachzuweisen, was trivial ist.
Hallo,
Danke, kann ich in einen Buch/Skriptum einen Beweis für dein Lemma finden? Oder ist das so "einfach", dass ich es hinbekommen müsste?
Ich hab mir nur unsauber überlegt für meine Anfangsbehauptung:
Sei G eine Gruppe,
[mm] N=\overbrace{=}^{\mbox{Lemma Vorlesung}} \{x_1^{\epsilon_1}*...*x_n^{\epsilon_n}|x_1,..x_n \in M, \epsilon_i \in \{1,-1\} \forall i\in \{1,..n\}\} [/mm] mit M [mm] \subseteq [/mm] G, M [mm] \not=0
[/mm]
x [mm] \in [/mm] N beliebig, g [mm] \in [/mm] G beliebig
[mm] gxg^{-1}=g( x_1^{\epsilon_1}*..*x_n^{\epsilon_n})g^{-1}=g x_1^{\epsilon_1}g^{-1} g*x_2^{\epsilon_2}*g^{-1} g....g^{-1} [/mm] g [mm] x_{n-1}^{\epsilon_{n-1}}*g^{-1} gx_n^{\epsilon_n}g^{-1}
[/mm]
Man schieb also immer ein [mm] e=g^{-1} [/mm] g dazwischen. Hier stört mich nur, dass man die Relation, dass es ein normalteiler ist auch noch für die Inversen der Erzeuger zeigen müsste. Da das [mm] \epsilon_i [/mm] auch -1 sein kann.
LG,
sissi
|
|
|
|
|
Hallo,
ja es ist so einfach, und ich weiß nicht, woran ich gestern gedacht habe. Deine Idee ist auch genau richtig. Sei $ x $ irgendein Erzeuger mit $ [mm] gxg^{-1}\in [/mm] N $ für alle $ g $. Wenn wir $ g $ fixieren, gilt das insbesondere auch für $ [mm] g^{-1} [/mm] $, also $ [mm] g^{-1} xg\in [/mm] N $. Da N Untergruppe ist, gilt auch [mm] $(g^{-1} [/mm] x [mm] g)^{-1}\in [/mm] N $, und das ist genau $ [mm] gx^{-1} g^{-1} [/mm] $.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 07:50 Do 05.02.2015 | Autor: | sissile |
Vielen Dank,
ja mich hats gewundert, dass die einfache Idee zum Ziel führt, wenn du als Profi schon nicht weiter weißt.
Ich lasse die Frage noch bestehen, das ich sehr an dem Beweis zu Hippias Lemma interessiert wäre.
> Wenn $ M $ eine Erzeugendenmenge von $ N $ ist und $ X $ eine Erzeugendenmenge von $ G $, dann reicht auch $ [mm] m^{x}\in [/mm] N $ fuer alle $ [mm] m\in [/mm] M $ und alle $ [mm] x\in [/mm] X $ zu wissen, damit $ <M> $ Normalteiler von $ G $ > ist.
Aber was ist denn die Definition eines Gruppenelements hoch ein Gruppenelement?
LG,
sissi
|
|
|
|
|
Es ist $ [mm] m^x=xmx^{-1} [/mm] $ (oder $ [mm] x^{-1} [/mm] mx $, das wird unterschiedlich gehandhabt, spielt hier aber keine Rolle). Man verwendet die Schreibweise allgemeiner im Rahmen von Gruppenwirkungen. Eine Hälfte des Beweises ist ja schon durch deine Aussage gegeben. Der Beweis für die andere Hälfte funktioniert genauso, wie der zu deiner ursprünglichen Aussage, in dem du ein beliebiges Element aus G als Produkt von Elementen aus $ X $ darstellst.
Siehe hier für die Schreibweise.
Liebe Grüße,
UniversellesObjekt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:11 Do 05.02.2015 | Autor: | sissile |
Ah, danke. Nun ist alles klar, die Schreibweise war mir nur neu.
Liebe Grüße,
sissi
|
|
|
|