www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Normalteiler
Normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 09.11.2013
Autor: Richie1401

Aufgabe
Seien [mm] h:G\to{}G' [/mm] ein Homomorphismus und [mm] $N'\subseteq [/mm] G'$ ein Normalteiler.

Zeigen Sie: [mm] N:=h^{-1}(N') [/mm] ist ein Normalteiler von G und konstruieren Sie einen Isomorphismus
[mm] G/N\to im(h)/im(h\cap{}N') [/mm]

Hallo,

Algebra macht mir leider immer noch Probleme...

Zunächst erst einmal der erste Teil der Aufgabe:

Sei [mm] n'\in{}N' [/mm] und [mm] g'\in{}G'. [/mm] Wir wissen nun:
[mm] N'\ni{}g'n'g'^{-1}. [/mm]  Wir wenden [mm] h^{-1} [/mm] an.

[mm] h^{-1}(N')\ni h^{-1}(g'n'g'^{-1})=h^{-1}(g')h^{-1}(n')h^{-1}(g'^{-1}) [/mm]

Wir definieren [mm] h^{-1}(g')=:g [/mm] und [mm] h^{-1}(g'^{-1})=:g^{-1} [/mm]

Und somit haben wir gezeigt, dass für alle [mm] n\in{N}=h^{-1}(N') [/mm] gilt
[mm] gng{-1}\in{}N [/mm]


Nun die Frage: Genügt diese Argumentation oder ist es sehr flach?

Zu der zweiten Teilaufgabe habe ich leider keinen richtigen Ansatz. Könntet ihr mir dafür einen Input geben? Das wäre super von euch.

Vielen Dank und schönes Wochenende!

        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 So 10.11.2013
Autor: wieschoo

moin,

du musst vorsichtig sein! Du hast einen Homomorphismus [mm]h\colon G\to G'[/mm]. Und nicht mehr! [mm]N:=h^{-1}(N')[/mm] meint das Urbild von [mm]N'[/mm]! Nix mit Inverse! Nix mit Invertierbar!

z.z. ist [mm]gNg^{-1}\le N[/mm] für alle [mm]g\in G[/mm]. Dazu sei [mm]n\in N[/mm] beliebig, d.h. es gibt ein [mm]n'\in N'[/mm] mit [mm]h(n)=n'[/mm].

Da du die Normalteilereigenschaft für [mm]N[/mm] beweisen sollst, musst du dich auch mit [mm]gNg^{-1}[/mm] begnügen.

Nun ist [mm]h(gng^{-1})=h(g)h(n)h(g^{-1})[/mm] und du hast [mm]h(n)\in N'\triangleleft G'[/mm].

Nun bist du dran. Was sagt dir [mm] $h(n)\in [/mm] N'$ über $n$ aus?

​Teil b) ist ein Spezialfall vom 2. Isomorphiesatz. Da genügt die kanonische Abbildung.

Bezug
                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 So 10.11.2013
Autor: Richie1401

Hallo wieschoo,

vielen Dank für deine Antwort.

> moin,
>  
> du musst vorsichtig sein! Du hast einen Homomorphismus
> [mm]h\colon G\to G'[/mm]. Und nicht mehr! [mm]N:=h^{-1}(N')[/mm] meint das
> Urbild von [mm]N'[/mm]! Nix mit Inverse! Nix mit Invertierbar!
>  
> z.z. ist [mm]gNg^{-1}\le N[/mm] für alle [mm]g\in G[/mm]. Dazu sei [mm]n\in N[/mm]
> beliebig, d.h. es gibt ein [mm]n'\in N'[/mm] mit [mm]h(n)=n'[/mm].
>  
> Da du die Normalteilereigenschaft für [mm]N[/mm] beweisen sollst,
> musst du dich auch mit [mm]gNg^{-1}[/mm] begnügen.
>  
> Nun ist [mm]h(gng^{-1})=h(g)h(n)h(g^{-1})[/mm] und du hast [mm]h(n)\in N'\triangleleft G'[/mm].
>  
> Nun bist du dran. Was sagt dir [mm]h(n)\in N'[/mm] über [mm]n[/mm] aus?

Nun, man weiß ja nun, dass [mm] h(g)h(n)h(g^{-1})\in{}N' [/mm] liegt, weil N' Normalteiler ist. Dies gilt aber für jedes [mm] n\in{}N. [/mm] Also wird [mm] gng^{-1} [/mm] durch $h$ in $h(N)=N'$ abgebildet. Folglich ist damit aber [mm] gng^{-1}\in{}N, [/mm] für jedes [mm] g\in{}G. [/mm]

Über eine Bestätigung der Überlegungen würde ich mich freuen.

>  
> ​Teil b) ist ein Spezialfall vom 2. Isomorphiesatz. Da
> genügt die kanonische Abbildung.

Ah - jo. Danke für den Hinweis. Da werde ich diesen wohl mal bemühen...


Bezug
                        
Bezug
Normalteiler: Bestätigung
Status: (Antwort) fertig Status 
Datum: 19:30 So 10.11.2013
Autor: wieschoo


>  Über eine Bestätigung der Überlegungen würde ich mich freuen.

[ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]