www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Normalform
Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalform: Normaldarstellung bei Scherung
Status: (Frage) überfällig Status 
Datum: 22:25 Di 09.01.2007
Autor: zicooo

Aufgabe
Gegeben ist die affine Abbildung [mm] \alpha [/mm] : [mm] \vec{x'}= \pmat{ 1+a & a \\ b & 1+b } [/mm] * [mm] \vec{x}, [/mm] a,b sind Element von R ohne {0}.
a) Setzen  Sie a=2 und b=-2. Bestimmen Sie die Normalform der affinen Abbildung [mm] \alpha [/mm] und geben Sie die wesentlichen Eigenschaften dieser Abbildung an.
b) (...)
c) Bestimmen Sie für den Fall b=-a die Normalform der affinen Abbildung [mm] \alpha [/mm] .
d) (...)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich stelle die Frage hier ins Hochschulforum, da es beim Forum für die Oberstufe kein richtiges Unterforum dafür gibt bzw. hier lauten die Unterforen bei Lineare Algebra Determinanten, Eigenwerte,... das passt besser zu unserem Thema "affine Abbildungen". Falls es trotzdem falsch ist, bitte verschieben! Ich schreib nächste Woche meine Abiarbeit und hab bis dahin kein Mathe mehr - deshalb wende ich mich an euch :).

Gut, also im Prinzip ist die oben genannte Aufgabe kein Problem. bei a) und c) ergibt sich als einziger Eigenwert 1 und somit ist die Abbildung eine Scherung mit der Fixpunktgeraden g: [mm] \vec{x}= [/mm] k * [mm] \vektor{1 \\ -1}. [/mm]

Meine Frage ist jetzt eher eine allgemeine Frage: Die Normaldarstellung bei einer Scherung bzw. Scherstreckung, also einer Abbildung einem Eigenwert und einem Eigenvektor (eindimensionaler Eigenraum) ist der uns genannten Form:
[mm] \vec{x'} [/mm] = [mm] \pmat{ r & c \\ 0 & r } [/mm]
Wobei r der Eigenwert ist, bei einer Scherung also 1. Was ist aber der Parameter c? Ich hab manchmal gelesen, dass er 1 ist, aber die Quellen sind nicht sicher ;). Zu einer Normaldarstellung sollte man ja auch die Basis angeben, die ja normalerweise bei affinen Abbildungen zweidimensional ist, bestehend aus den Eigenvektoren. Wie gebe ich diese an, wenn ich nur einen Eigenvektor habe? Die Basis muss doch zweidimensional sein, denn sonst ist sie doch unbrauchbar bei Zeichnungen. Ich blicke da nicht ganz so durch...

Vielen Dank für eure Hilfe!

Gruß Marius

P.S.: Sind affine Abbildungen eigentlich gewöhnlich als quasi fixes Abiturthema (eines von vier eingeschickten Themen, bei denen 3 bearbeitet werden müssen - RLP)? Bisher habe ich noch keinen getroffen, der ähnliches hatte...

        
Bezug
Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 15.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]