Normalengleichung,lin Ausgleic < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:03 So 07.06.2009 | Autor: | oby |
Aufgabe | Unter welcher Bedingung ist eine Lösung der Normalengleichung [mm] $A^T Ax=A^T [/mm] b$ eine Lösung von [mm] $\min\limits_{x \in \IR^n} \parallel [/mm] Ax-b [mm] \parallel_2$ [/mm] ? |
Hallo Matheraum!
Ich bin etwas im Zweifel darüber ob mein Lösungsansatz richtig ist, denn ich habe zeigen können, dass jede Lösung der Normalengleichung eine Lösung der Minimierungsaufgabe ist also gibts gar keine Bedingung?!. Damit wäre aber die Frage seltsam formuliert, so dass ich glaube einen Fehler in meinem Beweis zu haben:
i) Betrachte die Minimierung von [mm] $\parallel [/mm] Ax-b [mm] \parallel_2$ [/mm] . Sein nun [mm] $(x_k)$ [/mm]
Folge mit [mm] $\parallel Ax_k [/mm] -b [mm] \parallel_2 \rightarrow M:=\inf \parallel [/mm] Ax-b [mm] \parallel_2$ [/mm] .
Für $k [mm] \ge [/mm] K [mm] \in \IN$ [/mm] gilt : [mm] $\parallel Ax_k [/mm] -b [mm] \parallel_2 \le [/mm] 2M$ und damit folgt
[mm] $\parallel Ax_k \parallel_2 [/mm] = [mm] \parallel (Ax_k [/mm] -b) +b [mm] \parallel_2 \le \parallel Ax_k [/mm] -b [mm] \parallel_2 [/mm] + [mm] \parallel [/mm] b [mm] \parallel_2 \le [/mm] 2M + [mm] \parallel [/mm] b [mm] \parallel_2$ [/mm] .
Die Folge [mm] $(Ax_k) \subset [/mm] Bild(A)$ ist also beschränkt. Mit dem Satz von Bolzano Weierstrass kann man also eine konvergente Teilfolge auswählen , die gegen ein Element [mm] $\overline [/mm] {b}$ konvergiert. Der lineare Unterraum $Bild(A)$ ist abgeschlossen, also existiert ein [mm] $\overline [/mm] {x}$ mit [mm] $\overline{b}=A \overline [/mm] {x}$ . Damit ist nun [mm] $\parallel [/mm] A [mm] \overline [/mm] {x} -b [mm] \parallel_2 [/mm] = [mm] \inf \parallel [/mm] Ax-b [mm] \parallel_2$ [/mm] und somit existiert alo immer eine Lösung des Minimierungsproblems.
ii) Zeige nun, dass eine Lösung des Minimierungsproblems auch Lösung der Normalengleichung ist:
Sei [mm] $\overline [/mm] {x}$ eine Lösung des Problems [mm] $\min \parallel [/mm] Ax-b [mm] \parallel_2$ [/mm] . Dann ist [mm] $\overline [/mm] {x}$ auch eine Lösung des Problems [mm] $\min F(x):=\frac{1}{2} \parallel [/mm] Ax-b [mm] \parallel_2^2$ [/mm] .
Also ist [mm] $\nabla F(\overline [/mm] {x})=0 = [mm] A^T [/mm] (A [mm] \overline [/mm] {x} - b ) [mm] \Box$
[/mm]
Andersherum: [mm] $\nabla F(\overline [/mm] {x})=0$ (wie oben, nur andersherum) .
Betracht die Taylor Entwicklung: [mm] $\parallel [/mm] Ax-b [mm] \parallel_2 [/mm] = [mm] \parallel [/mm] A [mm] \overline [/mm] {x} -b [mm] \parallel_2 [/mm] + [mm] \nabla F(\overline {x})^T [/mm] (x - [mm] \overline [/mm] {x} ) + [mm] \frac{1}{2} [/mm] (x - [mm] \overline [/mm] {x} [mm] )^T A^T [/mm] A (x - [mm] \overline [/mm] {x} ) = [mm] F(\overline [/mm] {x}) + [mm] \frac{1}{2} \parallel [/mm] A (x- [mm] \overline [/mm] {x} ) [mm] \parallel_2^2 \le F(\overline [/mm] {x})$ für alle $x$, also löst [mm] $\overline [/mm] {x}$ die Minimierungsaufgabe [mm] $\Box$ [/mm] .
Also gibts doch gar keine Bedingung zur Frage,oder etwa doch?
Irgendwo muss ein Fehler speziell im zweiten Teil von ii) sein. Vielleicht könnt ihr mir ja da weiterhelfen, wo der Fehler liegt. Vielen Dank schonmal,
MfG Oby
PS: Ich hatte ein paar Formatierungsschwierigkeiten:
Mit [mm] \Delta [/mm] ist der Gradient gemeint und da wo {x} steht sollte eigentlich ein x mit Überstrich stehen. Ich hoffe es ist trotzdem lesbar.
Bem.: editiert
schachuzipus
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:21 So 07.06.2009 | Autor: | oby |
Vielen Dank schachuzipus!!
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 19:37 So 07.06.2009 | Autor: | oby |
Ich hoffe es ist jetzt lesbar.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Di 09.06.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:21 Di 09.06.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|