www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Normalengleichung gesucht
Normalengleichung gesucht < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalengleichung gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Do 13.09.2007
Autor: toteitote

Aufgabe
Bestimmen Sie eine Normalengleichung der ebene E, die die Gerade g und den Punkt P enthält. P (4/9/6) g: [mm] \vec{x} [/mm] = [mm] \vektor{2 \\ 3 \\ 2} [/mm] + r [mm] \vektor{1 \\ 3 \\ -2} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe erstmal die Punktrichtungsgleichung der Ebene aufgestellt, um dann mithilfe des Kreuzproduktes auf die Normalform zu kommen. Diese sieht folgendermaßen aus: E: [mm] \vec{x} [/mm] = [mm] \vektor{2 \\ 3 \\ 2} [/mm] + r [mm] \vektor{1 \\ 3 \\ -2} [/mm] + s [mm] \vektor{2 \\ 6 \\ 4} [/mm] Etwas stimmt damit nicht, weil mit dem Kreuzprodukt der Normalenvektor [mm] \vektor{0 \\ -8 \\ 0} [/mm] rauskommt und nicht der gewünschte [mm] \vektor{3 \\ -1 \\ 0} [/mm] Ich danke im Vorraus für die Hilfe. Gruß Tiemo

        
Bezug
Normalengleichung gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Do 13.09.2007
Autor: Somebody


> Bestimmen Sie eine Normalengleichung der ebene E, die die
> Gerade g und den Punkt P enthält. P (4/9/6) [mm]g: \vec{x} = \vektor{2 \\ 3 \\ 2} + r \vektor{1 \\ 3 \\ -2}[/mm]
>  Ich habe
> diese Frage in keinem Forum auf anderen Internetseiten
> gestellt.
>  Ich habe erstmal die Punktrichtungsgleichung der Ebene
> aufgestellt, um dann mithilfe des Kreuzproduktes auf die
> Normalform zu kommen. Diese sieht folgendermaßen aus: E:
> [mm]\vec{x} = \vektor{2 \\ 3 \\ 2} + r \vektor{1 \\ 3 \\ -2} + s \vektor{2 \\ 6 \\ 4}[/mm] Etwas stimmt damit nicht, weil mit
> dem Kreuzprodukt der Normalenvektor [mm]\vektor{0 \\ -8 \\ 0}[/mm]
> rauskommt

Ich erhalte etwas anderes:
[mm]\vektor{1\\3\\-2}\times \vektor{2\\6\\4}=\vektor{24\\-8\\0}[/mm]

Vielleicht schaust Du nochmals genauer hin, ob Dein Vektorprodukt richtig ist?

> und nicht der gewünschte [mm]\vektor{3 \\ -1 \\ 0}[/mm]

Hm, doch, das Vektorprodukt, das ich ausgerechnet habe, ist ein skalares Vielfaches (das 8 fache) dieses Vektors.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]