www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Normalenform der Ebene
Normalenform der Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenform der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Do 16.09.2004
Autor: MichiB.

   Hallo,
  ich habe eine Aufgabe die lautet: Bestimmen Sie die Normalenform der Ebene

                                                                                                                            
                                                                                                                            
              2          1                1                                                                                                                                                  
E:  x =       1   + r    2 +        s     1                                                                              
              3          1               -1                                                                              
                                                                                                                                
                                                                                                                              
                                                                                                                                

Ist es denn jetzt möglich das ich das Kreuzprodukt der Richtungsvektoren bilde und den Stützvektor so lasse.
                             2         -3                        
Hätte dann  E:x =            1   + t  -2                                    
                             3         -1                  


Hmm.. naja, wär auf jeden fall sehr dankbar wenn mir jemand helfen könnte.

Michael


Ich habe diese Frage in keinem weiteren Forum gestellt.

    
                                      
                                                                        




        
Bezug
Normalenform der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Do 16.09.2004
Autor: andreas

hi Michael

die idee den normalenvektor mit dem kreuzprodukt zu berechnen ist richtig. ich komme dabei auf
[m] \vec n = \left( \begin{array}{c} -3 \\ 2 \\ -1 \end{array} \right) [/m].

bei dir hat sich bei der zweiten koordinate ein vorzeichenfehler eingeschlichen (du kannst beim kreuzprodukt auch ganz einfach nachprüfen, ob du dich nicht verrechnet hast indem du das skalarprodukt mit den ausgangsvektoren berechnest - das muss ja dann null sein, wenn du richtig gerechnet hast).

nun musst du aber für die ebene folgende gleichung verwenden:
[m] E: \vec n \cdot ( \vex x - \vec p) = 0 [/m].

dabei ist [m] \vec p [/m] ein beliebiger vektor der ebene, z.b. der stützvektor aus deiner anderen darstellung.  wenn du das skalarprodukt noch ausmultiplizierst erhälst du die darstellung in hesse normalenform:
[m] a_1 x_1 + a_2 x_2 + a_3 x_3 = c [/m]

mit [m] a_1, a_2, a_3, c \in \mathbb{R} [/m].

ich denke dir reicht aber die erste darstellung. probiere das mal. wenn es nicht klappen sollte melde dich einfach nochmal.

grüße
andreas

Bezug
                
Bezug
Normalenform der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Do 16.09.2004
Autor: MichiB.

Hallo Andreas,

danke erst mal für deine Antwort,

ja mit dem Vorzeichen war ich mir nicht sicher, bei der mittleren Zeile.

  
  Soweit verstehe ich deins nur weiß nicht genau wie ich das ausrechnen soll.
        

   E:   n * ( x - p) = 0       bleibt x als Variable stehen?

                   -3                2
  Hätte dann  E :    2    *  ( x -   1    )  =  0
                   -1                3


                                                   -3           6
Alles ausmultipliziert ergibt bei mir:    E:   X    2      +    -2   = 0
                                                   -1           3

Könnte das stimmen?


Bezug
                        
Bezug
Normalenform der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Do 16.09.2004
Autor: andreas

hi Michael

> E:   n * ( x - p) = 0       bleibt x als Variable stehen?

ja x ist die variable. du kannst jetzt einen beliebigen vektor [m] x \in \mathbb{R}^3 [/m] einstzen und wenn die gleihcung erfüllt ist, so leiget x in der ebene, wenn nicht, dann nicht.


>                      -3                2
>    Hätte dann  E :    2    *  ( x -   1    )  =  0
>                     -1                3

[ok] das sieht richtig aus.

ausmultipliziert sieht das bei mir dann so aus:
[m] -3x_1 + 6 2x_2 - 2 -x_3 + 3 = 0 [/m]

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]