www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Normale in beliebigem Punkt
Normale in beliebigem Punkt < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normale in beliebigem Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Sa 03.03.2007
Autor: Fschmidt

Aufgabe
Bestimmen Sie für alle a [mm] \in \IR [/mm] die Gleichung der Normalen im Punkt P (a / f(a)).
Dazugehörige Funktion: [mm] f(x)=x*e^{2-x} [/mm]

Hallo,
Ich komme nicht damit zurecht den b Wert für meine Normalenfunktion y=m*x+b zu berechnen.

[mm] f'(x)=(e^2-e^2*x)*e^{-x} [/mm]

[mm] m=\bruch{-1}{f'(x)} [/mm]

somit: [mm] y=\bruch{-1}{(e^2-e^2*x)*e^{-x}}*x+b [/mm]

Ist das soweit überhaupt richtig? Kann ich x=a setzen?
Wie kann ich jetz mein b berechnen? Für einen bestimmten Punkt würde ich jetzt eine Punktprobe machen, aber wie allgemein?

Vielen Dank für einen Tip.
Grüße.

        
Bezug
Normale in beliebigem Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Sa 03.03.2007
Autor: Zwerglein

Hi, Fschmidt,

> Bestimmen Sie für alle a [mm]\in \IR[/mm] die Gleichung der Normalen
> im Punkt P (a / f(a)).
> Dazugehörige Funktion: [mm]f(x)=x*e^{2-x}[/mm]

>  Ich komme nicht damit zurecht den b Wert für meine
> Normalenfunktion y=m*x+b zu berechnen.
>  
> [mm]f'(x)=(e^2-e^2*x)*e^{-x}[/mm]

Seltsame Schreibweise!
Warum schreibst Du nicht - wie üblich:

f'(x) = (1 - [mm] x)*e^{2-x} [/mm]
  

> [mm]m=\bruch{-1}{f'(x)}[/mm]

Da wird erst dann "ein Schuh draus", wenn Du die x-Koordinate des gegebenen Punktes einsetzt!
Also: [mm] m=\bruch{-1}{f'(\red{a})} [/mm]

> somit: [mm]y=\bruch{-1}{(e^2-e^2*x)*e^{-x}}*x+b[/mm]

Siehst Du das Problem?
Das, was Du da hingeschrieben hast, ist doch nie und nimmer eine GERADE! Seit wann kann bei einer Geraden die Variable denn im Nenner eines Bruches oder im Exponenten einer Exponentialfunktion stehen?!

Daher:  [mm] y=\bruch{-1}{(e^2-e^{2*a})*e^{-a}}*x+b [/mm]

Oder mit meinem Vorschlag:


> Ist das soweit überhaupt richtig? Kann ich x=a setzen?
> Wie kann ich jetz mein b berechnen?

b kannst Du mit Hilfe der y-Koordinate des Punktes P, also f(a), berechnen:

f(a) = [mm] a*e^{2-a} [/mm]

Insgesamt aber ergibt sich ein recht seltsames Ergebnis!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]