www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Normale
Normale < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normale: Frage
Status: (Frage) beantwortet Status 
Datum: 18:12 Mi 07.09.2005
Autor: mareike-f

Hi,

ich habe folgende Aufgabe:
Berechnen Sie den Inhalt der Fläche, die vom Graphen von f, der Normalen in P und der x Achse begrenzt wird.

[mm]f(x)=x^3[/mm]
P (1/1)

Eigentlich kein Problem, aber ich hab vergessen wie man die Normale bekommt.

y=mx+b
y und x hab ich
und m ist dann [mm] \bruch{1}{m}[/mm] von der Funktion
und dann nur noch b ausrechnen.
Wäre das dann die Normale?

Grüße Mareike

        
Bezug
Normale: Punkt-Steigungs-Form
Status: (Antwort) fertig Status 
Datum: 18:21 Mi 07.09.2005
Autor: Loddar

Hallo Mareike!


Zunächst einmal musst Du dir die Steigung [mm] $m_t$ [/mm] der Tangente im Punkt $P \ (1; 1)$ ermitteln.

Das weißt Du doch, wie das geht, oder?


Anschließend kannst Du Dir die Steigung [mm] $m_n$ [/mm] der Normale über die Formel [mm] $m_n [/mm] \ = \ [mm] \red{-} [/mm] \ [mm] \bruch{1}{m_t}$ [/mm] ermitteln.


Um nun die Geradengleichung der Normalen zu berechnen, verwenden wir die Punkt-Steigungs-Form mit den eingesetzten Werten:

[mm] $m_n [/mm] \ = \ [mm] \bruch{y-y_P}{x-x_P}$ [/mm]

Mit den eingesetzten Werte kann man dann in die bekannte Form $y \ = \ m*x+b$ umstellen.


Wie lautet nun Deine gesuchte Geradengleichung der Normale?


Gruß
Loddar


Bezug
                
Bezug
Normale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Do 08.09.2005
Autor: mareike-f

hi,

danke langsam kommt alles wieder ins Gedächnis hatte es letztes Jahr ja schon mal gehabt.

Grüße Mareike

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]