www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Norm und Vielfaches von Vektor
Norm und Vielfaches von Vektor < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm und Vielfaches von Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Mi 06.05.2009
Autor: Igor1

Hallo,

Es sei [mm] \parallel [/mm] a +b [mm] \parallel [/mm] = [mm] \parallel [/mm] a [mm] \parallel [/mm] + [mm] \parallel [/mm] b [mm] \parallel. [/mm] (die Norm im euklidischen Raum (V, <.,.>).  a,b [mm] \in [/mm] V  die Vektoren.

z.z:  a= s * b   s [mm] \in [/mm] (0,1) [mm] \subseteq \IR [/mm]  (d.h . a und b sind  positive reelle Vielfache voneinander )



Ist diese Aussage ( a= s*b ) äquivalent zu:  a und b sind linear abhängig?
Wenn ja , dann habe ich einen ähnlichen Ansatz gesehen , wie :
Da man zeigen möchte , dass a,b linear abhängig sind , folgt, dass man  die  
lineare Abhängigkeit über  [mm] \lambda_{1} [/mm] a +  [mm] \lambda_{2} [/mm] b = 0 zeigt .
Ich könnte mir vorstellen, dass man  [mm] \parallel \lambda_{1} [/mm] a +  [mm] \lambda_{2} [/mm] b [mm] \parallel [/mm] = 0 mit geigneten Koeffizienten [mm] \lambda_{1,2} [/mm] bildet und dann argumentiert man , dass aus [mm] \lambda_{1} [/mm] a +  [mm] \lambda_{2} [/mm] b = 0 die lineare Abhängigkeit heraus kommt.
Die Frage ist , wie bekomme ich so einen Ausdruck wie   [mm] \parallel \lambda_{1} [/mm] a +  [mm] \lambda_{2} [/mm] b [mm] \parallel [/mm] =...=...= 0 ?

MfG
Igor


        
Bezug
Norm und Vielfaches von Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Mi 06.05.2009
Autor: M.Rex

Hallo

> Hallo,
>  
> Es sei [mm]\parallel[/mm] a +b [mm]\parallel[/mm] = [mm]\parallel[/mm] a [mm]\parallel[/mm] +
> [mm]\parallel[/mm] b [mm]\parallel.[/mm] (die Norm im euklidischen Raum (V,
> <.,.>).  a,b [mm]\in[/mm] V  die Vektoren.
>  
> z.z:  a= s * b   s [mm]\in[/mm] (0,1) [mm]\subseteq \IR[/mm]  (d.h . a und b
> sind  positive reelle Vielfache voneinander )
>  

Fang mal wie folgt an:

[mm] \parallel\vec{a}+\vec{b}\parallel [/mm]
[mm] =\parallel s*\vec{b}+\vec{b}\parallel [/mm]
[mm] =\parallel (s+1)*\vec{b}\parallel [/mm]
[mm] =\ldots [/mm]

Andererseits gilt:

[mm] =\parallel\vec{a}\parallel+\parallel\vec{b}\parallel [/mm]
[mm] =\parallel s*\vec{b}\parallel+\parallel\vec{b}\parallel [/mm]
[mm] =\ldots [/mm]

Kannst du die beiden Ansätze zusammenpuzzlen?


> Ist diese Aussage ( a= s*b ) äquivalent zu:  a und b sind
> linear abhängig?

Das heisst [mm] \vec{a}\parallel\vec{b} [/mm]

Wenn du jetzt die Einschränkung 0<s<1 nimmst, kannst du sogar etwas über die Länge der Vektoren sagen.

Marius

>  Wenn ja , dann habe ich einen ähnlichen Ansatz gesehen ,
> wie :
> Da man zeigen möchte , dass a,b linear abhängig sind ,
> folgt, dass man  die  
> lineare Abhängigkeit über  [mm]\lambda_{1}[/mm] a +  [mm]\lambda_{2}[/mm] b =
> 0 zeigt .
> Ich könnte mir vorstellen, dass man  [mm]\parallel \lambda_{1}[/mm]
> a +  [mm]\lambda_{2}[/mm] b [mm]\parallel[/mm] = 0 mit geigneten
> Koeffizienten [mm]\lambda_{1,2}[/mm] bildet und dann argumentiert
> man , dass aus [mm]\lambda_{1}[/mm] a +  [mm]\lambda_{2}[/mm] b = 0 die
> lineare Abhängigkeit heraus kommt.
>  Die Frage ist , wie bekomme ich so einen Ausdruck wie  
> [mm]\parallel \lambda_{1}[/mm] a +  [mm]\lambda_{2}[/mm] b [mm]\parallel[/mm]
> =...=...= 0 ?
>  
> MfG
>  Igor
>  

Bezug
                
Bezug
Norm und Vielfaches von Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Mi 06.05.2009
Autor: Igor1

Hallo M.Rex,

1)wie du es geschrieben hast , würde bedeuten, dass Du a = s*b schon als gegeben voraussetzt. Jedoch , laut der Aufgabenstellung sollte man das zeigen. Oder?

2) bedeutet a [mm] \parallel [/mm] b , dass aund b parallel zueinander sind? Bedeutet das nicht , dass sie allgemein linear abhängig sind?

MfG
Igor


Bezug
                        
Bezug
Norm und Vielfaches von Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 06.05.2009
Autor: M.Rex


> Hallo M.Rex,
>  
> 1)wie du es geschrieben hast , würde bedeuten, dass Du a =
> s*b schon als gegeben voraussetzt. Jedoch , laut der
> Aufgabenstellung sollte man das zeigen. Oder?

Yep. Du hast recht.

Du kannst hier aber die Dreiecksungleichung nutzen.

Es gilt ja laut Dreiecksungleichung:

[mm] \parallel\vec{a}\parallel+\parallel\vec{b}\parallel\ge\parallel\vec{a}+\vec{b}\parallel [/mm]

Hier soll aber gelten:

[mm] \parallel\vec{a}\parallel+\parallel\vec{b}\parallel\red{=}\parallel\vec{a}+\vec{b}\parallel [/mm]

Was kann man dann über die Ausrichtungen von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] aussagen?

>  
> 2) bedeutet a [mm]\parallel[/mm] b , dass aund b parallel zueinander
> sind? Bedeutet das nicht , dass sie allgemein linear
> abhängig sind?

Klar, Parallelität ist ein Spezialfall der Linearen Abhängigkeit.  


> MfG
>  Igor
>  

Marius

Bezug
                        
Bezug
Norm und Vielfaches von Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Mi 06.05.2009
Autor: SEcki


> 1)wie du es geschrieben hast , würde bedeuten, dass Du a =
> s*b schon als gegeben voraussetzt. Jedoch , laut der
> Aufgabenstellung sollte man das zeigen. Oder?

Ergänzung: du musst Eigenschaften des Skalarprodukts verwenden, um die Aussage zu zeigen. Nur mit Eigenschaften der Norm kommst du nicht weiter - da ist die Aussage auch falsch!

SEcki

Bezug
                                
Bezug
Norm und Vielfaches von Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Mi 06.05.2009
Autor: Igor1

könnt ihr vielleicht erklären, wie man ansatzweise mit der Aufgabe anfangen soll?
Dass man hier Skalarprodukt benutzen soll, ist relativ klar, da die Norm so definiert ist.
Wie die Vektoren sich zueinander verhalten sollten , ist ja auch schon klar: a und b sind postives reelles Vielfaches voneinander ( zu zeigen) und somit sind sie parallel zueinander  .
Und wie kann man mit dieser Information und der Gleichung [mm] \parallel [/mm] a+b  [mm] \parallel [/mm] =  [mm] \parallel [/mm] a [mm] \parallel [/mm]  +  [mm] \parallel [/mm]  b  [mm] \parallel [/mm]  konkrete Fortschritte machen?
Das Ziel ist halt  a= s*b zu zeigen. Welches Zwischenziel(!) sollte ich jetzt anstreben? Bzw. was sollte man bei der Aufgabe noch besonderes kennen? Oder ist es nur leichte Umformung der Gleichung der Norm? ( mit welchem Zwischenziel dann?)


MfG
Igor

Bezug
                                        
Bezug
Norm und Vielfaches von Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Do 07.05.2009
Autor: SEcki


> könnt ihr vielleicht erklären, wie man ansatzweise mit der
> Aufgabe anfangen soll?
> Dass man hier Skalarprodukt benutzen soll, ist relativ
> klar, da die Norm so definiert ist.

Naja, man könnte nur Normeigenschaften benutzen - das geht aber nicht. Jetzt überfliege mal alle Regeln, die ihr zum SKP bisher hattet, quadriere die zu beweisene Aussage und setze entsprechend ein. Btw: die Aufagbe ist ein bisschen falsch, denn offenbar ist s einfach nur eine positive Zahl, da man die Rollen von a und b vertauschen kann.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]