www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Norm & Integral
Norm & Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm & Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Do 29.05.2014
Autor: Petrit

Aufgabe
Sei [mm] f:[a,b]\to \IR [/mm] eine stetige Funktion. Zeigen Sie:

(a) Ist f nicht die Nullfunktion, dann ist [mm] \integral_{a}^{b}{|f(x)| dx} [/mm] > 0.
(b) Durch N(f) := [mm] \integral_{a}^{b}{|f(x)| dx} [/mm] ist eine Norm auf der Menge aller auf [a,b] stetigen Funktionen gegeben.

Hi!

Ich habe mal wieder eine Frage.
Ich habe Teilaufgabe (a) schon gezeigt. Mir ist nun nicht ganz klar,
was ich bei Teilaufgabe (b) zu tun habe.
Muss ich hier einfach die Normeigenschaften nachweise, wenn ja,
wie kann man das tun? Oder kann man das noch irgendwie anders zeigen?

Ich hoffe, ihr könnt mir mal wieder ein paar hilfreiche Tipps/Hinweise geben!

Ich sage schon mal danke und viele Grüße, Petrit!!!

        
Bezug
Norm & Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Do 29.05.2014
Autor: fred97


> Sei [mm]f:[a,b]\to \IR[/mm] eine stetige Funktion. Zeigen Sie:
>  
> (a) Ist f nicht die Nullfunktion, dann ist
> [mm]\integral_{a}^{b}{|f(x)| dx}[/mm] > 0.
>  (b) Durch N(f) := [mm]\integral_{a}^{b}{|f(x)| dx}[/mm] ist eine
> Norm auf der Menge aller auf [a,b] stetigen Funktionen
> gegeben.
>  Hi!
>  
> Ich habe mal wieder eine Frage.
>  Ich habe Teilaufgabe (a) schon gezeigt. Mir ist nun nicht
> ganz klar,
>  was ich bei Teilaufgabe (b) zu tun habe.
>  Muss ich hier einfach die Normeigenschaften nachweise,

Klar, was sonst ?


> wenn ja,
>  wie kann man das tun? Oder kann man das noch irgendwie
> anders zeigen?

Ganz geradeaus:

1. Zeige: $ [mm] \integral_{a}^{b}{|f(x)| dx}=0 [/mm] $   [mm] \gdw [/mm] f ist die Nullfunktion.

( a) könnte ein ganz klein wenig helfen.)

2. Zeige für s [mm] \in \IR: [/mm] $ [mm] \integral_{a}^{b}{|(sf)(x)| dx} [/mm] $=$ [mm] |s|\integral_{a}^{b}{|f(x)| dx} [/mm] $

3. Zeige :

   $ [mm] \integral_{a}^{b}{|f(x)+g(x)| dx} $\le [/mm] $ [mm] \integral_{a}^{b}{|f(x)| dx} [/mm] $+$ [mm] \integral_{a}^{b}{|g(x)| dx} [/mm] $



Petri heil

FRED

>  
> Ich hoffe, ihr könnt mir mal wieder ein paar hilfreiche
> Tipps/Hinweise geben!
>  
> Ich sage schon mal danke und viele Grüße, Petrit!!!


Bezug
                
Bezug
Norm & Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Do 29.05.2014
Autor: Petrit

Super, vielen Dank!
War mir nicht ganz sicher!

Gruß Petrit!

Bezug
                
Bezug
Norm & Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Do 29.05.2014
Autor: Petrit

Hi!
Ich habe dann doch nochmal eine Frage.
Und zwar bei der 2. Eigenschaft müsste das nicht [mm] \integral_{a}^{b}{|(f)(sx)| dx} [/mm] = [mm] |s|\integral_{a}^{b}{|f(x)| dx}? [/mm] Sonst wäre sf ja eine Komposition von Funktionen!

Gruß, Petrit!

Bezug
                        
Bezug
Norm & Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Do 29.05.2014
Autor: hippias

Nein. Normen sind auf Vektorraeumen definiert,  dabei ist $s$ ein Element des Skalarkoerpers und $f$ ein Element des Vektorraumes. Die Skalarmultiplikation in deinem Raum ist so definiert, wie Fred97 geschrieben hat.


Bezug
                                
Bezug
Norm & Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Do 29.05.2014
Autor: Petrit

Alles klar, danke für die Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]