www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Norm
Norm < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Mo 20.04.2009
Autor: Murx

Aufgabe
Man stelle die Punktmengen
[mm] M_{p} [/mm] = [mm] \{x \in \IR: \parallel x \parallel_{p} \le 1\} [/mm]
für p = 1, 2, [mm] \infty [/mm] dar.

Hallo zusammen,

also mir ist nicht ganz klar, wie ich mir die Normen in [mm] \IR [/mm] vorstellen soll. Die Definitionen der jeweiligen Normen sind mir klar. Doch wie zeichne ich diese Normen jetzt? Ich hab ja jetzt nur die x-Achse zur Verfügung...

Kann mir da vielleicht bitte jemand weiterhelfen? In [mm] \IR^{2} [/mm] ist mir klar wie die Einheitskreise für die Normen aussehen.

Danke schonmal.

        
Bezug
Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mo 20.04.2009
Autor: fred97


> Man stelle die Punktmengen
> [mm]M_{p}[/mm] = [mm]\{x \in \IR: \parallel x \parallel_{p} \le 1\}[/mm]
> für p = 1, 2, [mm]\infty[/mm] dar.
>  Hallo zusammen,
>
> also mir ist nicht ganz klar, wie ich mir die Normen in [mm]\IR[/mm]
> vorstellen soll. Die Definitionen der jeweiligen Normen
> sind mir klar. Doch wie zeichne ich diese Normen jetzt? Ich
> hab ja jetzt nur die x-Achse zur Verfügung...
>  
> Kann mir da vielleicht bitte jemand weiterhelfen? In
> [mm]\IR^{2}[/mm] ist mir klar wie die Einheitskreise für die Normen
> aussehen.

Ist hier wirklich [mm] ||.||_p [/mm] in [mm] \IR [/mm] gemeint ?

Wenn ja ,so ist

                    [mm] $||x||_p [/mm] = |x|$

Ist Dir das klar ? Somit ist

                
$ [mm] M_{p} [/mm] $ = $ [mm] \{x \in \IR: \parallel x \parallel_{p} \le 1\} [/mm] $ = [-1,1]

FRED




>  
> Danke schonmal.


Bezug
                
Bezug
Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mo 20.04.2009
Autor: Murx

Hallo,

ja es ist wirklich [mm] \parallel [/mm] x [mm] \parallel_{p} [/mm] für [mm] \IR [/mm] gemeint!

Ist das denn für [mm] \parallel [/mm] x [mm] \parallel_{2} [/mm] nicht:  [mm] \wurzel{|x|²}=|x| [/mm] = [-1,1] ?

Für [mm] \parallel [/mm] x [mm] \parallel_{\infty} [/mm] würd ich dann sagen, dass man max|x|=1 erhält, oder?

Sind die Überlegungen denn soweit richtig?

Danke.


Bezug
                        
Bezug
Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mo 20.04.2009
Autor: fred97


> Hallo,
>
> ja es ist wirklich [mm]\parallel[/mm] x [mm]\parallel_{p}[/mm] für [mm]\IR[/mm]
> gemeint!
>
> Ist das denn für [mm]\parallel[/mm] x [mm]\parallel_{2}[/mm] nicht:  
> [mm]\wurzel{|x|²}=|x|[/mm] = [-1,1] ?


Das ist nicht richtig.

links steht eine Zahl und rechts ein Intervall. Richtig ist:


[mm]\wurzel{|x|²}=|x|[/mm], somit { x [mm] \in\IR: ||x||_2 \le [/mm] 1 } =  [-1,1]



>  
> Für [mm]\parallel[/mm] x [mm]\parallel_{\infty}[/mm] würd ich dann sagen,
> dass man max|x|=1 erhält, oder?

S.o.


FRED


>  
> Sind die Überlegungen denn soweit richtig?
>  
> Danke.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]