Norm. Vektorräume/Folgenräume < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Wir definieren die folgenden Teilmengen von [mm] \IR^\infty [/mm] := [mm] \{f: \IN^+ \to \IR\} [/mm] = [mm] \IR^{\IN+}:
[/mm]
a) [mm] l_\infty [/mm] := [mm] \{(x_1,x_2,x_3,...);x_k \in \IR \mbox{ für k} \in \IN^+ \mbox{und sup}_{k \in \IN^+} |x_k| \in \IR\}
[/mm]
b) c := [mm] \{(x_1,x_2,x_3,...);x_k \in \IR \mbox{ für k} \in \IN^+ \mbox{und lim}_{k \to \infty} x_k \in \IR\}
[/mm]
c) [mm] c_0 [/mm] := [mm] \{(x_1,x_2,x_3,...);x_k \in \IR \mbox{ für k} \in \IN^+ \mbox{und lim}_{k \to \infty} x_k = 0}
[/mm]
d) [mm] c_{00} [/mm] := [mm] \{(x_1,x_2,x_3,...);x_k \in \IR \mbox{ für k} \in \IN^+ \mbox{und} \exists N \in \IN \mbox{mit} k > N \Rightarrow x_k = 0\}
[/mm]
1. Zeigen Sie, dass [mm] (l_\infty,+,\IR,*,||.||_\infty) [/mm] ein normierter Vektorraum ist.
2. Gilt dies auch wenn man [mm] l_\infty [/mm] ersetzt durch c, [mm] c_0 [/mm] bzw. [mm] c_{00}? [/mm] |
Hallo,
versuche gerade die Aufgabe zu lösen. Bin mir jedoch nicht ganz sicher ob das so richtig ist.
Zunächst eine Verständnisfrage: Es handelt sich bei den Mengen um Teilmengen des [mm] \IR^\infty, [/mm] also des unendlich dimensionalen Vektorraums? In die Vektoren wurden Folgen reingeschrieben, sodass jedes Folgenglied einen Eintrag im Vektor erhält?
zu 1:
zzg: [mm] l_\infty [/mm] ist ein normierter Vektorraum.
Man zeigt doch, dass es sich bei [mm] l_\infty [/mm] um einen Vektorraum und bei [mm] ||.||_\infty [/mm] (welche als Maximumsnorm definiert wurde) um eine Norm innerhalb dieses Vektorraums handelt?
Da für die einzelnen Einträge jedes Vektors aus [mm] l_\infty [/mm] gilt [mm] \mbox{sup}_{k \in \IN+} |x_k| \in \IR [/mm] ist jede Folge [mm] x_k [/mm] nach oben und nach unten hin beschränkt. Ist das so richtig? Also steckt in jedem Vektor eine beschränkte Folge [mm] x_k. [/mm] Die beschränkten Folgen bilden einen Vektorraum, somit müsste [mm] l_\infty [/mm] ein VR sein. Bleibt nur noch zzg. dass [mm] ||.||_\infty [/mm] eine Norm auf [mm] l_\infty [/mm] ist.
1.) Definitheit
sei x [mm] \in l_\infty [/mm] dann folgt für x=0=(0,0,0,...), dass [mm] ||x||_\infty [/mm] = [mm] max\{|0|,|0|,|0|,...\}=0 [/mm] und für [mm] ||x||_\infty [/mm] = 0 folgt [mm] \mbox{sup}_{k \in \IN+} |x_k| [/mm] = 0, somit x=0.
2.) Homogenität
sei x [mm] \in l_\infty, [/mm] t [mm] \in \IR, [/mm] dann folgt [mm] ||t*x||_\infty [/mm] = [mm] max\{|tx_1|,|tx_2|,|tx_3|,...\} [/mm] = [mm] \mbox{sup}_{k \in \IN+} |tx_k| [/mm] = [mm] |t|*\mbox{sup}_{k \in \IN+} |x_k| [/mm] = |t| [mm] ||x||_\infty
[/mm]
3. Dreiecksungleichung
sei x,y [mm] \in l_\infty [/mm]
[mm] ||x+y||_\infty [/mm] = [mm] max\{x_k+y_k\} [/mm] = [mm] \mbox{sup}_{k \in \IN+}|x_k+y_k| \le \mbox{sup}_{k \in \IN+}(|x_k|+|y_k|) [/mm] = [mm] ||x||_\infty [/mm] + [mm] ||y||_\infty
[/mm]
zu 2:
da bin ich leider völlig überfragt. Ich glaube auch nicht dass ich Aufg. 1 richtig gemacht habe :)
Vielen Dank im Voraus für eure Hilfe!
Gruß,
Gratwanderer
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Do 10.06.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|