www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Nochmal Normalverteilung
Nochmal Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nochmal Normalverteilung: Frage
Status: (Frage) beantwortet Status 
Datum: 14:53 Fr 14.01.2005
Autor: Unsterblich

Ein Schüler arbeitet in den  Ferien in einer Metallfirma und bearbeitet Werkstücke. Die Zeit (m), die er zur Bearbeitung eines Werkstückes benötigt, kann als normalverteilte Zufallsgröße mit dem Erwartungswert 8 und der Varianz 4 angesehen werden.

a) hab ich gelöst: P(X > 10) = 0,159

b) An einem Arbeitstag muss der Schüler 50 Werkstücke bearbeiten. Welche Verteilung besitzt die Zahl der Werkstücke, für deren Bearbeitung der Schüler länger als 10 Minuten benötigt? Wie groß ist näherungsweise die Wahrscheinlichkeit dafür, dass er für mindestens 7 Werkstücke länger als 10 Minuten benötigt?

Also zum ersten Teil von b) fällt mir leider nichts ein. Kann mir hier jemand weiterhelfen?

Zum zweiten Teil:
Dabei sollte es sich um eine Binomialverteilung handeln.

n=50 k=7 p=0,159 (aus Aufgabe a)

[mm]P_n(k;p)= \vektor{n \\ k}p^k(1-p)^n^-^k[/mm]

daraus ergibt sich: [mm]P_5_0(7;0,159)= 0,15[/mm]

        
Bezug
Nochmal Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 Fr 14.01.2005
Autor: Brigitte

Hallo Tobias!

> Ein Schüler arbeitet in den  Ferien in einer Metallfirma
> und bearbeitet Werkstücke. Die Zeit (m), die er zur
> Bearbeitung eines Werkstückes benötigt, kann als
> normalverteilte Zufallsgröße mit dem Erwartungswert 8 und
> der Varianz 4 angesehen werden.
>  
> a) hab ich gelöst: P(X > 10) = 0,159

[ok]

> b) An einem Arbeitstag muss der Schüler 50 Werkstücke
> bearbeiten. Welche Verteilung besitzt die Zahl der
> Werkstücke, für deren Bearbeitung der Schüler länger als 10
> Minuten benötigt? Wie groß ist näherungsweise die
> Wahrscheinlichkeit dafür, dass er für mindestens 7
> Werkstücke länger als 10 Minuten benötigt?
>  
> Also zum ersten Teil von b) fällt mir leider nichts ein.
> Kann mir hier jemand weiterhelfen?

s.u.

> Zum zweiten Teil:
>  Dabei sollte es sich um eine Binomialverteilung handeln.

Aber das ist doch die Beantwortung des ersten Teils. Bei jedem Werkstück ist die Wahrscheinlichkeit p=0.159, dass er es länger als 10 Min. bearbeitet. Dabei sollte man annehmen, dass die Zeiten für die einzelnen Werkstücke unabhängig sind. Das ist gerade der Aufbau eines Zufallsexperiments, bei dem die Anzahl der "Erfolge" (hier, dass er länger als 10 min. braucht) dann binomialverteilt ist (folgt leicht aus kombinatorischen Überlegungen).

> n=50 k=7 p=0,159 (aus Aufgabe a)
>  
> [mm]P_n(k;p)= \vektor{n \\ k}p^k(1-p)^n^-^k[/mm]
>  
> daraus ergibt sich: [mm]P_5_0(7;0,159)= 0,15[/mm]

Das ist nun aber nur $P(X=7)$. Gefragt war [mm] $P(X\ge [/mm] 7)$. Hier bietet sich wohl eher die Berechnung der Gegenwahrscheinlichkeit an.

Viele Grüße
Brigitte


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]