www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Nilpotente Matrizen
Nilpotente Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mi 28.05.2008
Autor: Zweiti

Aufgabe
Zeigen Sie, dass die folgenden Aussagen für eine Matrix A [mm] \in [/mm] Mat (n x n; K) äquivalent sind:
(1) A ist nilpotent
(2) Es ex. ein C [mm] \in Gl_{n}(K), [/mm] sodass [mm] C^{-1}AC [/mm] eine obere Dreiecksmatrix mit Nullen auf der Diagonalen ist.

Hinweis : Zeigen Sie, dass es ein [mm] D\in Gl_{n}(K) [/mm] gibt, sodass
[mm] D^{-1}AD= \pmat{ 0 |& & \* & \\ -|& - & - &- \\ 0 |& & & \\ \vdots |& & B & \\0 |& & & } [/mm]
und B [mm] \in [/mm] Mat ((n-1) x (n-1); K) nilpotente Matrix ist.

Hallo,
also ich weiß dass eine Matrix nilpotent ist, wenn [mm] A^{k}=0 [/mm] ist, aber wie ich das hier in dem Zusammenhang verwenden soll, weiß ich nicht.

Ich wäre für jeden Ansatz dankbar.

Zweiti

ICh hab diese Frage in keinem anderen Forum gestellt

        
Bezug
Nilpotente Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Mi 28.05.2008
Autor: angela.h.b.


> Zeigen Sie, dass die folgenden Aussagen für eine Matrix A
> [mm]\in[/mm] Mat (n x n; K) äquivalent sind:
>  (1) A ist nilpotent
>  (2) Es ex. ein C [mm]\in Gl_{n}(K),[/mm] sodass [mm]C^{-1}AC[/mm] eine obere
> Dreiecksmatrix mit Nullen auf der Diagonalen ist.
>  
> Hinweis : Zeigen Sie, dass es ein [mm]D\in Gl_{n}(K)[/mm] gibt,
> sodass
>  [mm]D^{-1}AD= \pmat{ 0 |& & \* & \\ -|& - & - &- \\ 0 |& & & \\ \vdots |& & B & \\0 |& & & }[/mm]
> und B [mm]\in[/mm] Mat ((n-1) x (n-1); K) nilpotente Matrix ist.
>  Hallo,
>  also ich weiß dass eine Matrix nilpotent ist, wenn [mm]A^{k}=0[/mm]
> ist, aber wie ich das hier in dem Zusammenhang verwenden
> soll, weiß ich nicht.
>
> Ich wäre für jeden Ansatz dankbar.

Hallo,

Du solltest wissen oder Dir überlegen, daß nilpotente nxn-Matrizen den n-fachen Eigenwert 0 haben.

Also haben sie einen Eigenvektor [mm] v_0, [/mm] welchen Du zu einer Basis B des [mm] K^n [/mm] ergänzen kannst.

Wenn D die Matrix ist, die Dir die Transformation von von B zur Standardbasis durchführt, so bekommst Du das als Hinweis gegebene Resultat.

Für [mm] A^k=0 [/mm] berechne nun [mm] (D^{-1}AD)^k [/mm]  unter Berücksichtugung der Tatsache, daß Du hier Blockmatizen multiplizierst.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]