www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Nichttriviale Gruppe
Nichttriviale Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichttriviale Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Mo 21.11.2011
Autor: emulb

Aufgabe
Es sei (G,*) eine Gruppe. Das Zentrum der Gruppe G ist definiert durch:

Z(G):= {a [mm] \in [/mm] G: a * b = b * a für alle b [mm] \in [/mm] G}

Zeige (Z(G),*) ist eine abelsche Gruppe.

Das hab ich gezeigt und bewiesen jedoch ist mir im Skript etwas aufgefallen, dass dieser Aufgabe ähnelt.

Was haben die folgenden Terme zu bedeuten:

i) Z(G)=G
ii) [mm] Z(G)={1_{G}} [/mm]
iii)  Z(G) [mm] \not= {1_{G}}, [/mm] G

kann mir jemand beispiele dazu nennen?

        
Bezug
Nichttriviale Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mo 21.11.2011
Autor: kamaleonti

Moin emulb,
> Es sei (G,*) eine Gruppe. Das Zentrum der Gruppe G ist
> definiert durch:
>  
> Z(G):= [mm] \{a \in G: a * b = b * a für alle b \in G\} [/mm]
>  
> Zeige (Z(G),*) ist eine abelsche Gruppe.
>  Das hab ich gezeigt und bewiesen jedoch ist mir im Skript
> etwas aufgefallen, dass dieser Aufgabe ähnelt.
>  
> Was haben die folgenden Terme zu bedeuten:
>  
> i) Z(G)=G

Das Zentrum stimmt mit der Gruppe überein (gilt für jede abelsche Gruppe).

>  ii) [mm]Z(G)=\{1_{G}\}[/mm]

Das Zentrum beinhaltet nur das neutrale Element der Gruppe, ist also die triviale Untergruppe von G. Beispiel [mm] S_n, [/mm] n>2.

>  iii)  Z(G) [mm]\not= \{1_{G}\},[/mm] G

Das Zentrum ist nicht trivial, das heißt hat Ordnung >1.

>  
> kann mir jemand beispiele dazu nennen?

LG

Bezug
                
Bezug
Nichttriviale Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 21.11.2011
Autor: emulb

Ich versteh die Beispiele nicht ganz.
sorry

Bezug
                        
Bezug
Nichttriviale Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 06:56 Di 22.11.2011
Autor: fred97


> Ich versteh die Beispiele nicht ganz.

Was verstehst Du nicht ? Du solltest Dich schon etwas ausführlicher äußern.

Ist zum Beispiel G eine Abelsche Gruppe, so ist doch klar, dass Z(G)=G ist.

Bei [mm] S_3 [/mm] kannst Du doch locker nachrechnen, dass [mm] Z(S_3) [/mm] nur aus dem Einselement von [mm] S_3 [/mm] besteht.

FRED


>  sorry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]