www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Nichtlineare DGL
Nichtlineare DGL < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichtlineare DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Do 04.11.2010
Autor: Michi_

Hallo,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich habe eine nichtlineare DGL 1.Ordnung

[mm] x(1-t^2)* [/mm] x' - [mm] t(1-x^2)=0 [/mm]

a.) Bestimmung der stationären Lösung

[mm] x(1-t^2)*x' [/mm] = [mm] t(1-x^2) [/mm]

x' = [mm] \bruch{t(1-x^2)}{x(1-t^2)} [/mm]

-> stationäre Lösung bei x=-1, x=1

b.)Löse die DGL durch Trennung der Variabeln

[mm] \bruch{dx}{dt} (1-t^2)x [/mm] = [mm] t(1-x^2) [/mm]

[mm] \bruch{x}{1-x^2} [/mm] * dx  = [mm] \bruch{t}{1-t^2} [/mm] * dt

-1/2 [mm] \integral \bruch{-2x}{1-x^2} [/mm] dx = -1/2 [mm] \integral \bruch{-2t}{1-t^2} [/mm] *dt

ln [mm] (1-x^2) [/mm] = ln [mm] (1-t^2) [/mm] +C
[mm] 1-x^2=t^2 [/mm] +C
x=t + C

c.) Bestimme den Gültigkeitsbereich der Lösung in Abhängigkeit der Integrationskonstante C

c=x-t
x=t+x-t
x=x                       D element aus [mm] R\{0} [/mm]

d.) Wieviel Lösungen hat das AWP x(1)=1

eigentlich nur eine und die exact bei x=1 und t=1 oder??




        
Bezug
Nichtlineare DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Do 04.11.2010
Autor: MathePower

Hallo Michi_,

> Hallo,
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> ich habe eine nichtlineare DGL 1.Ordnung
>  
> [mm]x(1-t^2)*[/mm] x' - [mm]t(1-x^2)=0[/mm]
>  
> a.) Bestimmung der stationären Lösung
>  
> [mm]x(1-t^2)*x'[/mm] = [mm]t(1-x^2)[/mm]
>  
> x' = [mm]\bruch{t(1-x^2)}{x(1-t^2)}[/mm]
>  
> -> stationäre Lösung bei x=-1, x=1
>
> b.)Löse die DGL durch Trennung der Variabeln
>  
> [mm]\bruch{dx}{dt} (1-t^2)x[/mm] = [mm]t(1-x^2)[/mm]
>  
> [mm]\bruch{x}{1-x^2}[/mm] * dx  = [mm]\bruch{t}{1-t^2}[/mm] * dt
>  
> -1/2 [mm]\integral \bruch{-2x}{1-x^2}[/mm] dx = -1/2 [mm]\integral \bruch{-2t}{1-t^2}[/mm]
> *dt
>  
> ln [mm](1-x^2)[/mm] = ln [mm](1-t^2)[/mm] +C
> [mm]1-x^2=t^2[/mm] +C


Das stimmt nicht, denn

[mm]e^{(1-x^2)}=e^{ln(1-t^2) +C}=e^{C}*e^{ln(1-t^2)}=C_{1}*\left(1-t^{2}\right)[/mm]


>  x=t + C
>  
> c.) Bestimme den Gültigkeitsbereich der Lösung in
> Abhängigkeit der Integrationskonstante C
>  
> c=x-t
>  x=t+x-t
>  x=x                       D element aus [mm]R\{0}[/mm]
>  
> d.) Wieviel Lösungen hat das AWP x(1)=1
>  
> eigentlich nur eine und die exact bei x=1 und t=1 oder??
>  
>


Gruss
MathePower

Bezug
                
Bezug
Nichtlineare DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Do 04.11.2010
Autor: Michi_

hi,

danke stimmt

ln [mm] (1-x^2) [/mm] = ln [mm] (1-t^2)+C [/mm]
[mm] 1-x^2 [/mm] = [mm] (1-t^2)*C [/mm]
x=+/- [mm] \wurzel{1-(1-t^2)*C} [/mm]

c.)Wenn ich diesen Ausdruck bekomme habe ich doch, wie kann ich dann
den Definitionsbereich in Abhängigkeit von 0 festlegen?



Bezug
                        
Bezug
Nichtlineare DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Do 04.11.2010
Autor: MathePower

Hallo Michi_,

> hi,
>  
> danke stimmt
>  
> ln [mm](1-x^2)[/mm] = ln [mm](1-t^2)+C[/mm]
>  [mm]1-x^2[/mm] = [mm](1-t^2)*C[/mm]
>  x=+/- [mm]\wurzel{1-(1-t^2)*C}[/mm]
>  
> c.)Wenn ich diesen Ausdruck bekomme habe ich doch, wie kann
> ich dann
> den Definitionsbereich in Abhängigkeit von 0 festlegen?
>  


Nun, der Ausdruck unter der Wurzel muß größer oder gleich 0 sein.


Gruss
MathePower

Bezug
                                
Bezug
Nichtlineare DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Di 09.11.2010
Autor: Michi_

[mm] (1-t^2)* [/mm] x' - [mm] t(1-x^2)=0 [/mm]

a.) Bestimmung der stationären Lösung

[mm] x(1-t^2)*x' [/mm] = [mm] t(1-x^2) [/mm]

x' = [mm] \bruch{t(1-x^2)}{x(1-t^2)} [/mm]

-> stationäre Lösung bei x=-1, x=1

b.)Löse die DGL durch Trennung der Variabeln

[mm] \bruch{dx}{dt} (1-t^2)x [/mm] = [mm] t(1-x^2) [/mm]

[mm] \bruch{x}{1-x^2} [/mm] * dx  = [mm] \bruch{t}{1-t^2} [/mm] * dt

-1/2 [mm] \integral \bruch{-2x}{1-x^2} [/mm] dx = -1/2 [mm] \integral \bruch{-2t}{1-t^2} [/mm] *dt

ln [mm] (1-x^2) [/mm] = ln [mm] (1-t^2) [/mm] +C

[mm] x=\wurzel{1-(1-t^2)*C_1} [/mm]

c.) Bestimme den Gültigkeitsbereich der Lösung in Abhängigkeit der Integrationskonstante C

C<= [mm] \bruch{1}{t^2+1} [/mm]

d.) Wieviele Lösungen hat das AWP x(1)=1

setze ich nun mein AWP in die allg form ein

bekomme ich

[mm] 1=\wurzel{1-(1-1^2)*C} [/mm]

damit hat die funktion x(1)=1 doch nur eine einzige Lösung
da mein C beim Einsetzen des AWP in die allg. Lösung 0 ergibt??

Danke nochmals

Gruss
Michi_





Bezug
                                        
Bezug
Nichtlineare DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Di 09.11.2010
Autor: MathePower

Hallo Michi_,

> [mm](1-t^2)*[/mm] x' - [mm]t(1-x^2)=0[/mm]
>  
> a.) Bestimmung der stationären Lösung
>  
> [mm]x(1-t^2)*x'[/mm] = [mm]t(1-x^2)[/mm]
>  
> x' = [mm]\bruch{t(1-x^2)}{x(1-t^2)}[/mm]
>  
> -> stationäre Lösung bei x=-1, x=1
>
> b.)Löse die DGL durch Trennung der Variabeln
>  
> [mm]\bruch{dx}{dt} (1-t^2)x[/mm] = [mm]t(1-x^2)[/mm]
>  
> [mm]\bruch{x}{1-x^2}[/mm] * dx  = [mm]\bruch{t}{1-t^2}[/mm] * dt
>  
> -1/2 [mm]\integral \bruch{-2x}{1-x^2}[/mm] dx = -1/2 [mm]\integral \bruch{-2t}{1-t^2}[/mm]
> *dt
>  
> ln [mm](1-x^2)[/mm] = ln [mm](1-t^2)[/mm] +C
>
> [mm]x=\wurzel{1-(1-t^2)*C_1}[/mm]


[mm]x=-\wurzel{1-(1-t^2)*C_1}[/mm]

löst auch die DGL.


>  
> c.) Bestimme den Gültigkeitsbereich der Lösung in
> Abhängigkeit der Integrationskonstante C
>  
> C<= [mm]\bruch{1}{t^2+1}[/mm]


Hier ist der Gültigkeitsbereich für t gefragt.


>  
> d.) Wieviele Lösungen hat das AWP x(1)=1
>  
> setze ich nun mein AWP in die allg form ein
>  
> bekomme ich
>  
> [mm]1=\wurzel{1-(1-1^2)*C}[/mm]
>  
> damit hat die funktion x(1)=1 doch nur eine einzige
> Lösung
>  da mein C beim Einsetzen des AWP in die allg. Lösung 0
> ergibt??


Nein. Mit der Anfangsbedingung x(1)=1 ergibt sich

[mm]1=\wurzel{1-(1-1^2)*C}=\wurzel{1-0*C}[/mm]

Da hier C nicht bestimmbar ist, gibt es unendlich viele Lösungen.


>  
> Danke nochmals
>
> Gruss
>  Michi_
>  


Gruss
MathePower  

Bezug
                                                
Bezug
Nichtlineare DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Di 09.11.2010
Autor: Michi_

ok, vielen dank mathepower

gruss
michi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]