www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Nicht ausgeartete Bilinearform
Nicht ausgeartete Bilinearform < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nicht ausgeartete Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:46 Sa 10.03.2012
Autor: imzadi

Liebes Forum, eine Bilinearform ist nicht ausgeartet,falls aus der Vorraussetzung B(v,w) gleich 0 folgt fuer alle v dass w gleich 0 und umgekehrt. Wieso ist dann Skalarprodukt nichausgeartet? Im Fall der Ortogonalitaet folgt doch aus S(v,w) fuer alle v, dass es ein w existiert, dass eben ungleich null ist! Ist das nicht schon die Verneinung von Nichtausgeartetheit?
Vielen Dank fuer eure Hilfe.

Gruesse
Imzadi

Ich habe diese Frage nirgendwo in anderen Foren auf anderen Internetseiten gestellt.

        
Bezug
Nicht ausgeartete Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Sa 10.03.2012
Autor: Marcel

Hallo,

> Liebes Forum, eine Bilinearform ist nicht ausgeartet,falls
> aus der Vorraussetzung B(v,w) gleich 0 folgt fuer alle v
> dass w gleich 0 und umgekehrt. Wieso ist dann Skalarprodukt
> nichausgeartet? Im Fall der Ortogonalitaet folgt doch aus
> S(v,w) fuer alle v, dass es ein w existiert, dass eben
> ungleich null ist! Ist das nicht schon die Verneinung von
> Nichtausgeartetheit?

das Skalarprodukt erfüllt doch sicher [mm] $=0\,$ [/mm] für alle $v [mm] \in V\,.$ [/mm] Wäre das Skalarprodukt nicht nichtausgeratet (also ausgeartet) - bleiben wir der Einfachheit wegen einfach erstmal im euklidischen [mm] $\IR^n$ [/mm] - so müsste es doch ein $w [mm] \not=0$ [/mm] so geben, dass
[mm] $$B(v,w)=0\,$$ [/mm]
für alle $v [mm] \in V\,.$ [/mm]

Was Du nur begründest, ist, dass es zu jedem $w [mm] \in \IR^n$ [/mm] ein $v [mm] \in \IR^n$ [/mm] mit $v [mm] \not=0$ [/mm] und [mm] $B(v,w)=0\,$ [/mm] gibt. Das ist nicht die Verneinung "der einen Richtung" von nichtausgeartet.

Formal heißt diese eine Bedingung doch:
Sei [mm] $V\,$ [/mm] Vektorraum mit Bilinierform [mm] $B(.,.)\,.$ [/mm] Wenn diese nichtausgeartet ist, so gilt:
Für alle $w [mm] \in [/mm] V$ gilt:
[mm] $$(B(v,w)=0\;\; \forall [/mm] v [mm] \in [/mm] V) [mm] \Rightarrow w=0\,.$$ [/mm]

(Formal: [mm] $\forall [/mm] w [mm] \in V:\;\;(B(v,w)=0\;\;\forall [/mm] v [mm] \in [/mm] V) [mm] \Rightarrow w=0\,.$ [/mm]
Verneinung davon:
[mm] $\exists [/mm] w [mm] \in V:\;\;\Big((B(v,w)=0 \;\;\forall [/mm] v [mm] \in [/mm] V) [mm] \wedge [/mm] w [mm] \not=0\Big)\,.$) [/mm]

Die obige formale Verneinung ausformuliert:
Es existiert ein $w [mm] \in [/mm] V$ so, dass
$$B(v,w)=0 [mm] \;\;\forall [/mm] v [mm] \in V\,,$$ [/mm]
aber $w [mm] \not=0\,.$ [/mm]

Die von Dir angesprochene Orthogonalität besagt nicht das letztstehende:
Beispiel:
Sei etwa [mm] $w=(1,0,1)^T \in \IR^3\,.$ [/mm] Dann gilt zwar [mm] $<(1,0,1)^T,(0,1,0)^T>=0$ [/mm] obwohl [mm] $(1,0,1)^T \not=(0,0,0)^T\,,$ [/mm] aber [mm] $(1,0,1)^T$ [/mm] erfüllt NICHT
[mm] $$<(1,0,1)^T,v>=0 \text{ für alle }v \in \IR^3\,.$$ [/mm]

Denn: Setze etwa [mm] $v:=(1,0,0)^T\,.$ [/mm]

Allgemeiner:
Beim Skalarprodukt gilt doch für jedes $w [mm] \not=0$ [/mm]
$$<w,w> [mm] \;\;\;\;> \;0\,,$$ [/mm]
d.h. für jedes $w [mm] \in [/mm] V$ gibt es ein $v [mm] \in [/mm] V$ mit $<v,w> [mm] \not=0$ [/mm] - nämlich [mm] $v:=w\,.$ [/mm]

Gilt also
$$<v,w>=0 [mm] \text{ für alle }v\in V\,,$$ [/mm]
so gilt dies insbesondere für [mm] $v:=w\,.$ [/mm] Dann folgt aber [mm] $=0\,,$ [/mm] und das geht eben nur für [mm] $w=0\,,$ [/mm] wie gerade nochmal erwähnt!

P.S.
Die "einfachste" ausgeartete Bilinearform auf [mm] $V\,$ [/mm] ist die [mm] $B(.,.)\,$ [/mm] definiert durch $B(v,w):=0$ für alle $(v,w) [mm] \in [/mm] V [mm] \times V\,.$ [/mm] Warum wohl?

P.P.S.
Bitte aufpassen: Oben meine ich mit [mm] $<.,.>\,$ [/mm] wirklich das Skalarprodukt. Manchmal schreibt man ja auch [mm] $<.,.>:=B(.,.)\,,$ [/mm] also für die Bilinearform: Das mache ich HIER NICHT!!
(Während ein Skalarprodukt AUF EINEM REELLEN VEKTORRAUM stets eine Bilinearform ist, muss umgekehrtes nicht gelten - siehe etwa die obige Bilinearform "Null".)

Gruß,
Marcel

Bezug
                
Bezug
Nicht ausgeartete Bilinearform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:30 So 11.03.2012
Autor: imzadi

Danke Marcel,jetzt habe ich es begriffen,alles klar.

Viele Gruesse
Imzadi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]