www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Newton-Verfahren
Newton-Verfahren < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 04.03.2010
Autor: nix19

Aufgabe
Führen sie 2 schritte des newton-verfahren zur bestimmung einer nst von [mm] f(x)=x^3-2x^2+x [/mm] mit dem startwert x0=2 aus und bestimmen sie für jede nst, mit welcher konvergenzordnung das newton-verfahren lokal gegen diese nst konvergiert.

hallo
so hab sie zwei annäherungen ausgerechnet
x1= 1,6
x2=1,347

so dann habe ich für die ordung folgendes gemacht
[mm] f'(x)=3x^2-4x+1 [/mm]
f''(x)=6x-4
f'''(x)=6

da x=1 eine nst ist habe ich 1 eingesetzt
f(1)=f´(1)=0   => 2-fache nst
f´´(1)=2!=0

konvergenzrate ist dann 1-(1/2)=1/2

und wie bekomme ich jetzt die ordnung raus?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


danke schonmal




        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Do 04.03.2010
Autor: metalschulze

Hallo Nadine,

ich hab mal meine Unterlagen gewälzt und folgendes entdeckt:

Konvergenzordnung p:  [mm] |x_{n+1} [/mm] - [mm] x^{(0)}| \le q*|x_{n} [/mm] - [mm] x^{(0)}|^{p} [/mm]
mit q...Konvergenzrate   und [mm] x^{(0)} [/mm] exakte Lösung der Gleichung (also hier 1)

nach p umstellen und fertig....
ich hoffe es hilft dir weiter
Gruß Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]