www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Newton-Cotes-Formel
Newton-Cotes-Formel < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Cotes-Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Do 14.02.2008
Autor: detlef

Hallo,

ich soll näherungsweise mit den Newton-Cotes-Formeln für n=1,...,6 das Integralsinus [mm] \integral_{0}^{2*pi}{sin(x)/x dx} [/mm] im Intervall 0 bis 2*pi bestimmen!

Bei n=1 sind die Gewichtungen 1/2, aber was muss ich nun machen? Muss ich 0 und 2*pi in den Integralsinus einsetzen? Das wäre ja Null!?

detlef

        
Bezug
Newton-Cotes-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Do 14.02.2008
Autor: Bastiane

Hallo detlef!

> Hallo,
>  
> ich soll näherungsweise mit den Newton-Cotes-Formeln für
> n=1,...,6 das Integralsinus [mm]\integral_{0}^{2*pi}{sin(x)/x dx}[/mm]
> im Intervall 0 bis 2*pi bestimmen!
>  
> Bei n=1 sind die Gewichtungen 1/2, aber was muss ich nun
> machen? Muss ich 0 und 2*pi in den Integralsinus einsetzen?
> Das wäre ja Null!?
>  
> detlef

Ich kenn mich damit jetzt nicht mehr ganz so gut aus, aber wenn, dann müsstest du glaube ich 0 und [mm] 2\pi [/mm] in die ganze Funktion einsetzen (was bei 0 schlecht wäre, weil sie da gar nicht definiert ist...). Aber es kann durchaus sein (glaube ich), dass da 0 rauskommt - dann ist diese Newton-Cotes Formel eben nicht geeignet. Probier's doch mal für die anderen Formeln aus - da sollten dann die Stützstellen zwischen 0 und [mm] 2\pi [/mm] Werte [mm] \not=0 [/mm] ergeben.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Newton-Cotes-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Do 14.02.2008
Autor: detlef

ja, das ist auch mein Problem, mit der Deinfition der Funktion! Muss man dann vllt den Grenzwert nehmen?

detlef

Bezug
        
Bezug
Newton-Cotes-Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Fr 15.02.2008
Autor: angela.h.b.


> ich soll näherungsweise mit den Newton-Cotes-Formeln für
> n=1,...,6 das Integralsinus [mm]\integral_{0}^{2*pi}{sin(x)/x dx}[/mm]
> im Intervall 0 bis 2*pi bestimmen!

Hallo,

wenn ich es richtig verstehe, ist Dein Problem die zu integrierende Funktion an der Stelle 0, denn sie ist dort nicht definiert.

Was Du vorliegen hast, ist also ein uneigentliches Intergral, es ist $ [mm] \integral_{0}^{2\cdot{}\pi}{sin(x)/x dx} $=\limes_{a\rightarrow 0} \integral_{a}^{2\cdot{}\pi}{sin(x)/x dx}, [/mm] wie Du ja auch schon vermutetest.

Gruß v. Angela


Bezug
                
Bezug
Newton-Cotes-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Fr 15.02.2008
Autor: abakus

Hallo Leute,
der Grenzwert von [mm] \bruch{\sin(x)}{x} [/mm] für x gegen Null ergibt 1.

Viele Grüße
Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]